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Abstract 

Recently Moffat Showed that the Szafron inhomogeneous cosmological 
solution can lead to an accelerating inflationary period without a large ini­
tial vacuum energy and with A = 0 in the early universe near the Planck 
time, combined with an accelerating universe at late times, in the non­
linear regime with galaxy structure and voids, without need to introduce 
negative pressures or a cosmological constant. Here we present an inhomo­
geneous and anisotropic cosmological model, in 2+1 gravity, which satisfy 
all the energy conditions, although it generates an accelerated universe. 
We work in a 2+1 gravity scenario in order to simplify the equations sys­
tem and to allow us to find analytical and simple solutions. Our propose 
is basically to improve our understanding on the role of inhomogeneities 
on the acceleration of the universe. 

1 Solutions of the field equations 
The general metric is given by 

ds2 = e^dt2 - e2^dr2 - r2S2d92, (1) 

The non-null components of the Einstein's tensor are 

Gtt = {e2 0V rrSr + e2 0V r ^ - e2,prS„. - 2e2'pSr + e 2 ^ trS t \ , (2) 
rS ' ' ' ' ' ' 
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Gtr = —^{4>,rrSt + ipítrSr + iptS - rStr - St}, (3) 

-20 
Gr r -{e2U,rrS,r + e2U,rS + e2^^trS,t - e 2 ^ r 5 „ } , (4) 

G* ee r 2 S 2 { e - 2 ^ r - e ^ ^ W + e - 2 ^ 0 , r r + 

(e-2%t - e2U,t)4>,t ~ e-2U,u}- (5) 

In order to study these solutions with self-similarity of the second kind we 
introduce two new adimensional variables, x an(A Ti through of the relations 

X = ln(z) = In 

ln(t), 

(6) 

(7) 

where a is an adimensional constant. 
Using these transformations, and imposing tha t the metric must to depend 

only on the variable Xi w e find 

G±± — 
2Se2iP 

{a2e2*[S,xx + 5 X - V,X(S,X + S)] - ^ A ^ } , (8) 
t2 

Gf, atrS {S,xx ~ *P,x(S,x + S)~ S,x(<P,x ~ !)}> (9) 

G = 
2Se24> {a2e2^,x(S,x+S)}- -ê-iS^-SM—p-e^Sj, (10) 

G 
S2 

99 {c^e -^^ + ^ f e - ^ - l ) ] 
r 2 e - 2 0 

-j^Vl>,xx ~ i>,x(<P,x ~ *P,x ~ " ) ]}• 

The momentum-energy tensor is given by 

T^ = pu^Uv +prrl_lrL, +P90i_l0„1 

(11) 

(12) 

where p is the energy density, pr and po are the radial and the tangencial 
pressures, respectively, with u^, r^ and 0^ being given by 

Uli = le*U>5l, v = /e^*><£, 6» = Zr5(X)tf (13) 
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where we adopted the comoving frame. 
Substi tuting (??) - (??) and (??) into the field equations given bellow 

G„v = KT^, (14) 

we have 

y,x = v^.x + (y + l)(i>,x - y)> (16) 

Pr = r r ^ ^ ^ ^ x i y +1) - ^ 2 fe/x + y(y - <t>x + «)]}, (17) 

1 e~2^ e~2* 
Pe = ^i-pr&,xx+(l>A(l>,x-^,x-1)}--^?i^,xx-^,x((l>x-^,x-a)}}- ( 1 8 ) 

Note tha t in the above equations we make 

y(x) = ^f- (19) 
Then we have 4 equations and 6 functions to determine, tha t are 4>,ipi &, 

p, pr and pé. Thus, we consider an additional equation, which is pr = 0, in 
order to solve the system. Doing the coordinates transformation (??), the state 
equation furnishes 2 more equations, tha t are 

e - 2 i V x ( y + l ) = 0, (20) 

e-^[y,x + y(y-0x + a)} = Q1 (21) 

For equation (??) there are 2 possible solutions 

(i)y+1 = 0 (22) 

(H)^,x = ° (23) 
From (??) we have 

y=-\. (24) 

Put t ing (??) into (??) we find 

Six) = Soe-*, (25) 

Substi tuting (??) into (??) we obtain a differential equation for <fi(x) 

,x 
a-1, (26) 
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which admites the solution 

0(x) = ( a - l ) x + 0o. (27) 

On the other hand, substi tuting (??) into (??) we obtain 

0,x = °- (28) 
implying, from (??), tha t a = 1, which characterizes a first kind self-similar 
solution, with the function ip undetermined. As here we are interested only on 
second kind self-similarity ( a ^ O and a ^ 1), we discard this solution. 

From solution (??), we have 

</>(x) = <h- (29) 

Now, substi tuting (??) into (??) we get a non linear differential equation for 

y(x) g i v e n by 

y,x = y(y + a)i ( 3 0 ) 

which has the solution 

a 
yix) = [cae°x - 1]' ( 3 1 ) 

This result allows two different solutions. If we choose c ^ 0, we have collapse 
forming black hole or naked singularity [?]. For c = 0, y reduces to y = —a. 

2 Caso 1: c = 0 

In this case we need to return to the equation (??) in order to reobtain the 
expression for the function S. Then, from equation (??) we have 

y(x) = - " , (32) 

which implies 

S(x) = Soe-°x (33) 

and 

y(x) = -aX + ^o- (34) 

The energy density is given by 

P = Kpe2<pH2 • (35) 

The metric for this solution can be writ ten as 

r 2 a 
ds2 = e24>0dt2 -mldr2 + r2 dO2}. (36) 

t2 
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The condition Rg > 0 imposes tha t So > 0. From the expression to p we 
can identify a singularity on t = 0, which corresponds to a Rg — 0 0 , clS dt, result 
of an accelerated expansion, as can see in the following 

SoA1-^ 
Rg = - ^ > 0, (37) 

Rg = " > 0. (38) 
2S ,

0r(1-Q) 

W 
We have an accelerated cosmological model, an accelerated cosmological 

model which begins in a initial singularity (t = 0), with all the energy conditions 
satisfied. 

3 Conclusion 

We obtain all the possible solutions of the Einstein's equations for a anisotropic 
and spherically symmetric, self-similar of the second kind fluid in a space-time 
(2+l)-dimensional. We need to introduce a state equation, pr = 0, in order to 
solve the problem and showed tha t the unique solution in this case represents 
a dust fluid. The global properties are studied, always considered the energy 
conditions. They reveled tha t for a < 1, So < 0 and etc > 0 the collapse results 
in a black hole formation. It is interesting to investigate if the solution can 
represent a critical solution for the gravitational collapse. Besides, choosing 
c = 0 and So > 0, we have an accelerated cosmological model which begins in a 
initial singularity (t = 0), with all the energy conditions satisfied. 
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