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Abstract 

In this paper we solve the Einsteins' field equations for a spherically 
symmetric anisotropic fluid, with kinematic self-similarity of the first kind, 
in spacetimes (2+l)-dimensional. Considering a null radial pressure we 
show that the fluid collapses forming a black hole in the end, even if it is 
constituted by phantom energy. 
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1 Introduction 
Recently, self-similar solutions of the Einstein field equations have at t racted 
a great deal of attention, not only because they can be studied analytically 
through simplification of the problem, but also because of their relevance in 
astrophysics and critical phenomena in gravitational collapse. 

Lately, we studied self-similar solutions in various spacetimes. In particular, 
we considered a massless scalar field in 2 + 1-dimensional circularly symmetric 
spacetimes with kinematic self-similarity of the second kind in the context of 
Einstein's theory, and found all of such solutions. We investigated their local and 
global properties and found tha t some of them represent gravitational collapse of 
a massless scalar field, in which black holes are always formed. In another paper 
we consider an anisotropic fluid, with the same self-similarity, and we showed 
tha t the unique solution, when the radial pressure is vanished, represents a dust 
fluid which collapses forming both naked singulaties and black holes. 

In this paper, we extend the above studies to the case of an anisotropic fluid 
with zero radial pressure, but now in the self-similarity of the first kind context. 

2 Solutions of the field equations 

The general metric is given by 

ds2 = e^dt2 - e2^dr2 - r2b2d92, (1) 

The non-null components of the Einstein's tensor are 

Gtt = Í e 2 0 V rrS r + e2 0V r ^ - e2<t>rS rr - 2e 2 0 S r + e2^V t rS t} , (2) 
r g > > > > 

Gtr = —^ {<P,rrS t + ~ip,trSr + ip tS - rStr - S t} , (3) 

Grr = ^ { e 2 0 0 , r r S r + e 2 ^ , r S + e 2 ^ , t r S t - e2^rS,tt} , (4) 
r b 

Gee = r2b2{e-2^02
r - e - ^ W + e~2">,rr + e ^ t W 

-e-*Hl ~ e-2U,u}- (5) 

In order to study these solutions with self-similarity of the first kind we 
introduce two new adimensional variables, x a n d Ti through of the relations 

X = In (z) = In (6) 

l n ( - i ) . (7) 
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Note that we are considering that the range of the time coordinate is given 
by —oo < t < 0. Using these transformations, and imposing that the metric 
must to depend only on the variable x, we find 

Gtt — • ^ j {e20 iS,xx + S,x - tx (S,x + S)] - Ç t x ^ } , («) 

Gtr = ^ {S,xx - tx (S,x + S)- StX (0,x - 1)} , (9) 

Grr = ^J^{^[^x(.S,x+S)} (10) 

t2 

r2 1 
<S,xx-S,x0,x)-¥^S,x\ 

Gee = 5 2 | e - ^ [ 0 , x x + 0 , x ( 0 , x - V , x - l ) ] - ! : ^ [ V ' , x x + 

~tx (0,x - tx - 1)]} • (11) 

The momentum-energy tensor is given by 

v \ Pr T jj, ?V + Pedn9Vl (12) 

where p is the energy density, pr and po are the radial and the tangential 
pressures, respectively, with u^, r^ and 0^ being given by 

*V = e**><£ , r^ = e^% , 0^ = rS(X)6% (13) 

where we adopted the comoving frame. 
Substituting (8)-(ll) and (12) into the field equations given bellow 

<V = K T ^ (I4) 

we have 

P = - \ ç ^ - ^ [y,x + (y+l)(y-tx)} - ^e~*H,xy}, (15) 

y,x = y<P,x + (y + i)(^,x -v), (i6) 

Pr = ̂ ijz^^xiy+l) - 1 e^ [y,x + y(y-^x + 1)]}, (17) 
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Pd 
1 -2ip -20 

i-^r~ &.XX + 0,x(0,x - $,x - !)] 

- ^ , x ( ^ x - ^ , x - !)]}• 

Note tha t in the above equations we make 

t2 -It: 
(18) 

y(x) s x 
S ' 

(19) 

Then we have 4 equations and 6 functions to determine, tha t are <fi ip, S, p, 
pr and pg. Thus, we consider two additional equations, which are pr = 0 and 
pg = cup, in order to solve the system. Doing the coordinates transformation 
(6), the s tate equations furnish 2 more equations, tha t are 

c(y+l)- e2(x-0+^) [y^ + y { y _ ^ x + 1 } ] = 0, (20) 

[<?\xx +(l),x((l),x -^,x~ !)] 

+u>[y,x + ( y + l ) ( y - V , x ) ] = 0 

Substi tuting equation (??)into (??) equation we find 

1)]} 

e ( x - 0 + ^ ) ^ ; X (y + i ) 

Then, we have 2 possible solutions, which are 

(i) y + 1 = o 

and 

(21) 

(22) 

(23) 

(24) (ii) <j>,x - efc-^ty.x = °-
We are not be able to solve analyticaly the second case, but s tart ing of (i) 

and coming back into the other field equations, we have the solutions 

S(x) =S0e-x, 

ip (x) = V"o + In =("-i)x 

and 

4>{x) = 0o, 

(25) 

(26) 

(27) 

where <po, ipo. So and a are integration constants. 
Finaly, the metric which represents this solution is given by 
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ds2 dr 
-t 

(u,-iy 
dr2 - S%t2de2, (28) 

since we done <po = ipo = 0, without lost of gererality. 
The Kretschmann's scalar, for these solutions are given by 

K(r,t) = 
A{LÜ-1)2{LÜ2 + 1) 

t4 [l + arC1-"^-*)^-1)]' 

So, there is the possibility of formation of until two singularities, tha t are 

(29) 

^ '-'sing U 

and 
(-*) 

jap/a-") 
The geometric radius Rg is defined by 

(30) 

(31) 

Rg = S r = -S0 t. (32) 

Note tha t the geometric radius decreases with the time coordinate, indicating 
tha t the process can represents a collapse. 

The expansion of an ingoing and outgoing null geodesies congruence is use full 
to understand the global properties of the solutions. They are given by 

Si — 9n So. (33) 

3 The energy conditions 
For a > 0, the signs of the energy density and of the tangential pressure 

P = 
PKt2 

( 1 - W ) 

a 

and 

Pe = 
Lü(í — Lü) 

PKÍ2 1 
( 1 - " ) ' 

(34) 

(35) 

are determined by the terms 1 — LU and w(l — w), respectively. Then it is easy 
to see tha t for — 1 < LU < 1 all the energy conditions are satisfied. Moreover, 
if we admit the dark energy scenario, we can construct a collapse model from 
of a phantom anisotropic fluid, with LU < — 1. In this last case, all the energy 
conditions are violated, although the energy density preserves its positivity. 

5 



4 Conclusion 
We obtain a solution of the Einsteins equations for an anisotropic and spherically 
symmetric, self-similar of the first kind fluid in a spacetime (2+l)-dimensional. 
We need to introduce the state equations, pr = 0 and pg = cup, in order to solve 
the problem and showed tha t there is a solution which represents a collapse 
process, resulting in a normal or phantom black hole in the end. In fact, to 
assure tha t we have a black hole, it is still necessary to match our solution with 
the BTZ vacuum solution. This is done for us now. 
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