Investigation into behavior of weakly-bound proton via B(GT) measurement for the β decay of ²⁴Si

Y. Ichikawa¹,* T. Kubo², N. Aoi², V. Banerjee³, B. A. Brown⁴, A. Chakrabarti³,

N. Fukuda², H. Iwasaki¹, S. Kubono⁵, T. Motobayashi², T. Nakabayashi⁶, T. Nakamura⁶,

T. Nakao¹, T. Okumura⁶, H. J. Ong¹,[†] T. K. Onishi¹, D. Suzuki¹, H. Suzuki¹,*

M. K. Suzuki¹, T. Teranishi⁷, K. N. Yamada², H. Yamaguchi⁵, and H. Sakurai²

¹Department of Physics, University of Tokyo, Tokyo, Japan

²Nishina Čenter, RIKEN, Saitama, Japan

³Variable Energy Cyclotron Centre, Kolkata, India

⁴Department of Physics and Astronomy, and National Superconducting Cyclotron Laboratory,

Michigan State University, Michigan, USA

⁵Center for Nuclear Study, University of Tokyo, Tokyo, Japan

⁶Department of Physics, Tokyo Institute of Technology, Tokyo, Japan and

⁷Department of Physics, Kyushu University, Fukuoka, Japan

We performed B(GT) measurement for the β decay of ²⁴Si in order to investigate behavior of a weakly-bound s-wave proton. The behavior of a weakly-bound proton in a proton-rich nucleus is one of the interesting topics to explore exotic nuclear structures, in association with proton halo [1]. Mirror asymmetry on nuclear structure helps us to close up a characteristic behavior of such a weakly-bound proton in a proton-rich nucleus. One of the example is the Thomas-Ehrman (TE) shift [2] that is lowering of the Coulomb energy due to the spatially spreading of a s-wave proton. The TE shift is important for the spectra of nuclei near the proton-drip line. We should take into account another effect, that is the change of configuration in the wave function due to lowering of the single-particle energy of the $s_{1/2}$ orbit. ²⁴Si is a nucleus near the proton-drip line and β -decays to ²⁴Al. Since ²⁴Al has 5 valence protons in the sd shell, a state dominated by s-wave protons is expected to appear in an excited states fed by the β decay. Indeed there is found a TE-type mirror asymmetry of energy level on the second 1⁺ states between ²⁴Al and ²⁴Na [3,4,5]. However the change of configuration also may be related to the asymmetry. Since B(GT) is a sensitive observable to the configuration of wave function, we can extract the contribution related to the change of configuration using mirror asymmetry of B(GT).

The experiment was carried out at the RIPS facility in RIKEN. It included the measurements for the β -delayed γ rays which had not been measured so far, and for the β -delayed protons of ²⁴Si. In this presentation, we will report the experimental results of the B(GT) measurement. Discussion on the comparison with theoretical calculations which takes into account the Coulomb force and the TE shift is also given in order to clarify the effect of the weakly-bound proton on the nuclear structure.

- [2] R.G. Thomas, Phys. Rev. 88, 1109 (1952); J.B. Ehrman, Phys. Rev. 81, 412 (1951).
- [3] G.C. Kiang et al., Nucl. Phys. A499, 339 (1989).
- [4] S. Kubono *et al.*, Nucl. Phys. A588, 521 (1995).
- [5] R.E. McDonald *et al.*, Phys. Rev. **181**, 1631 (1969).

^[1] B.A. Brown, P.G. Hansen, Phys. Lett. B381, 391 (1996).

^{*}Present address:Nishina Center, RIKEN, Saitama, Japan

 $^{^\}dagger \mathrm{Present}$ address: Research Center for Nuclear Physics, Osaka University, Osaka, Japan