Analogies in the structure of exotic nuclei with N≈50 and N≈82 M. Górska¹, A. Blazhev², P. Boutachkov¹, N. Braun², T. Brock³, L. Caceres¹, K. Eppinger⁴, T. Faestermann⁴, J. Gerl¹, H. Grawe¹, Ch. Hinke⁴, A. Jungclaus⁵, Z. Liu⁶, B.S. Nara Singh³, S. Pietri¹, M. Pfützner⁷, Zs. Podolyak⁸, P.H. Regan⁸, D. Rudolph⁹, R. Wadsworth³, H.J. Wollersheim³ for the RISING collaboration ¹GSI Darmstadt, Planckstr. 1, D-64291, Darmstadt ²IKP, University of Cologne, D-50937 Cologne, Germany ³Department of Physics, University of York, York, Y010 5DD, UK ⁴Physics Department E12, TUM, 85748 Garching, Germany ⁵Universidad Aut'onoma de Madrid, E-2100610 Madrid, Spain ⁶University of Edinburgh, Edinburgh, UK ⁷IEP, University of Warsaw, PL-00681 Warsaw, Poland ⁸Department of Physics, University of Surrey, UK ⁹Department of Physics, Lund University, S-22100 Lund, Sweden Two main mechanisms are predicted to drive the possible shell evolution phenomena: the first is the so called monopole migration [1], which acts for both proton and neutron-rich nuclei, and the second, shell quenching, which is due to a softening of the potential shape that results from the presence of an excessive number of neutrons in very neutron-rich nuclei [2]. These mechanisms modify the known magic numbers as a consequence of shifting effective singleparticle levels when going towards either the proton or the neutron drip lines. In medium-heavy nuclei the effort to establish shell evolution concentrates around the ¹⁰⁰Sn [3] and ¹³²Sn [4,5] doubly magic nuclei. The Sn isotopes form the longest isotopic chain in the nuclear chart accessible to current experimental study and thus provide a stringent testing ground for nuclear structure models. A remarkable similarity was found between the decay of 8⁺ isomers in ⁹⁸Cd₅₀ [6] and $^{130}\text{Cd}_{82}$ [5], both of which have a pure $g_{9/2}^{-2}$ proton-hole configuration. However, the analogue of the known core excited isomer in ^{98}Cd [7] was not observed in ^{130}Cd , within experimental sensitivity, thus underlining the differences in the underlying neutron singleparticle structure. The understanding of analogies in the structure of both regions of nuclei and the evolution of the N=82 shell gap below ¹³²Sn is of importance in predicting the path of the rapid-neutron capture process which partially drives the production of elements heavier than Fe in nature. A handful of additional information on these two regions of nuclei was obtained recently in spectroscopy studies within the Rare ISotopes INvestigation at GSI (RISING) project [8,9] including the rp-process waiting point nuclei. Selected results will be discussed and compared with large scale shell model calculations using various sets of the realistic residual two-body interaction. - [1] T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005). - [2] J. Dobaczewski, I. Hamamoto, W. Nazarewicz and J.A. Sheik, Phys. Rev. Lett. 72, 981 (1994). - [3] H. Grawe et al., Eur. Phys. J. 27, s01, 257 (2006). - [4] A. Shergur et al., Eur. Phys. J A 25, s01, 121 (2005). - [5] A. Jungclaus, et al., Phys. Rev. Lett. **99**, 132501 (2007). - [6] M. Górska et al., Phys. Rev. Lett. 79, 2415 (1997). - [7] A. Blazhev et al., Phys. Rev. C 69, 064304 (2004). - [8] M.Górska et al., Phys. Lett. B, in press. - [9] H. J. Wollersheim et al., Nucl. Instr. Meth. A 537, 637 (2005).