

Atomic Energy of Canada Limited

۲ _

----- <

LATTICE MEASUREMENTS WITH 19-ELEMENT NATURAL URANIUM METAL ASSEMBLIES

PART I: BUCKLINGS FOR A RANGE OF

SPACINGS WITH D20 AND He COOLANTS

by

K.J. SERDULA and R.E. GREEN

Chalk River, Ontario October 1965

AECL-2516

LATTICE MEASUREMENTS WITH 19-ELEMENT NATURAL URANIUM METAL ASSEMBLIES

PART I: BUCKLINGS FOR A RANGE OF SPACINGS WITH D₀O AND He COOLANTS

by

K.J. SERDULA AND R.E. GREEN

ABSTRACT

Bucklings derived from activation measurements in the ZED-2 reactor are given for 19-element natural uranium metal assemblies. Measurements were made in triangular arrays of 55 assemblies at pitches in the range 20 to 40 cm. "Coolants" used were;

- (1) D_2^0 of moderator purity,
- (2) He to simulate a voided condition.

Bucklings obtained with He as coolant are higher than those for D_2O coolant for the pitches investigated.

CHALK RIVER, ONTARIO

OCTOBER, 1965.

AECL-2516

-i-

INDEX

.

-

-

•

-

•

PAGE

	ABSTRACT	
	INDEX	i
	TABLES	.ii
	FIGURES	111
1.	INTRODUCTION	1
2.	ONE GROUP AND TWO GROUP DIFFUSION THEORY	1
3.	EXPERIMENTAL	3
	 3.1 Fuel and lattice arrangement 3.2 Determination of the geometrical buckling 3.3 Measurement of spectrum parameters 3.4 Critical height measurements 3.5 He-cooled lattices 	34 556
4.	DATA ANALYSIS AND RESULTS	6
	 4.1 Neutron activation distributions 4.2 Derivation of the geometrical bucklings 4.3 Corrections to buckling values 4.4 Macroscopic distribution of Cd-Patio and 	6 6 7
	 4.4 Macroscopic distribution of cu-katio and relative In/Cu ratio 4.5 Extrapolation lengths 	8 9
5.	DISCUSSION OF RESULTS	10
	5.1 Bucklings 5.2 Macroscopic In Cd-ratios and relative In/Cu ratios	10 11
	5.3 One-group and two-group models in analysis 5.4 Extrapolation lengths	11 11
6.	CONCLUSIONS	12
	ACKNOWLEDGEMENTS	13
	REFERENCES	14
	APPENDICES APPENDIX A APPENDIX B	37 74

-11-

TABLES

TABLE <u>NUMBER</u>	TITLE	PAGE <u>NUMBER</u>	-
I	Cross-sectional areas of materials per cell for 19-element natural uranium metal assembly.	15	۰.
II	Values of L^2 and L^2 for 19-element natural- uranium metal assembly lattices.	16	
III	Buckling summary - D ₂ O coolant.	17	
IV	Buckling summary - He coolant.	18	
ν	Average values of the macroscopic In Cd-ratio or relative In/Cu ratio measured at cell boundaries as a function of lattice pitch.	19	
VI	Extrapolation lengths (D ₂ O coolant).	20	
VII	Extrapolation lengths (He coolant).	21	

APPENDICES

APPENDIX

А

1-A to 18-A Summary of :	relative neutron flux distributions	38
measured in metal assem	cores of 19-element natural-uranium blies (D_0O -cooled) at pitches of 20,	to
22, 24, 26,	28, 32, 36 and 40 cm.	55

APPENDIX

А

19-A to 36-A	Summary of relative neutron flux distributions	56
-	measured in cores of 19-element natural-uranium	to
	metal assemblies (He-cooled) at pitches of 20,	10
	22, 24, 26, 28, 32, 36 and 40 cm.	73

APPENDIX

в

1-B to 3-B Spatial distribution of In Cd-ratio measured 75 at pitches of 20, 24 and 28 cm (D₂O coolant).
4-B Spatial distribution of relative In/Cu ratio measured at a pitch of 40 cm (D₂O coolant).
78

-iii-

FIGURES

.

. .

•

.

FIGURE NUMBER		PAGE <u>NUMBER</u>
1	Cross section of 19-element natural- uranium metal assembly.	22
2	Partial cut-away of 19-element natural- uranium assembly.	23
3	Coolant exclusion circuit in ZED-2	24
4	Foil loading pattern A.	25
5	Foil loading pattern B.	26
6	Components of the detector suspension system.	27
7	Axial variation of the In Cd-ratio.	28
8	Radial variation of the In Cd-ratio.	29
9	Axial variation of relative In/Cu ratio for 40 cm D ₂ O-cooled lattice.	30
10	Radial variation of relative In/Cu ratio for 40 cm D ₂ O-cooled lattice.	31
11	Radial extrapolation lengths δR , (D ₂ O coolant).	32
12	Radial extrapolation lengths δR , (He coolant).	33
13	Axial extrapolation lengths, δ^{Z}_{t} (TOTAL), $\delta^{Z}_{l}(LOWER) \stackrel{\text{and } \delta^{Z}}{u}(UPPER) \stackrel{(D_{2}O-coolant)}{2}$.	34
14	Axial extrapolation lengths, δ^{Z}_{t} (TOTAL), $\delta^{Z}_{l}(LOWER)$ and $\delta^{Z}_{u}(UPPER)$ (He-coolant).	35
15	Bucklings for 19-element natural-uranium metal assemblies.	36

1. INTRODUCTION

Experimental values of reactor physics parameters of cluster fuel are required to test the models or recipes used to predict the nuclear properties of lattices with fuel channels having the complex geometry required to provide the necessary heat transfer characteristics. This report describes buckling measurements for 19-element natural uranium metal fuel assemblies moderated with heavy water, which formed one part of a program of lattice parameter measurements for fuel assemblies having large neutron absorption areas. Earlier measurements on heavy-water-moderated, natural-uranium-metal cluster lattices⁽¹⁾ covered a limited range of pitches and the 19 elements of the cluster were arranged in a hexagonal pattern. In present studies the 19-element clusters were arranged in a circular CANDU-type $array^{(2)}$ with the clusters enclosed in a simulated coolant tube which enabled studies to be made both with and without D₀O coolant.

Bucklings derived from Mn activation measurements and cellboundary In Cd-ratios were measured in a triangular array of 55 assemblies in the ZED-2 reactor. Bucklings are given for both D_2O and He coolant for the following lattice pitches; 20, 22, 24, 26, 28, 32, 36 and 40 cm. The spatial distribution of the In Cd-ratio was measured at pitches of 20, 24 and 28 cm, and the relative In/Cu activation ratio at a pitch of 40 cm.

Radial bucklings were derived from spatial Mn activation distributions using a two-group homogeneous diffusion theory model for a finite cylindrical reactor with a radial reflector. The axial distributions well removed from the core boundaries were fitted to a cosine function. Total bucklings (radial plus axial) are corrected to a moderator condition of 25° C and 99.72 atom % D₀O.

2. ONE-GROUP AND TWO-GROUP DIFFUSION THEORY

The homogeneous two-group diffusion equations for the fundamental radial distributions of the thermal neutron flux ϕ_{th} and fast flux ϕ_{f} in an infinite cylindrical reactor with a radial reflector can be expressed as (3).

$$\phi_{\rm th}$$
 (r) = A'J_o(λ r) + C'I_o(β r) - - - - (1)

$$\phi_{f}$$
 (r) = SA'J₀(λ r) - S'C'I₀(β r) - - - (2)

respectively, while for a reactor of finite length with the origin located a distance z_0 from the flux maximum, the

fundamental solution of the axial distribution f(z), in homogeneous one-group diffusion theory is,

$$f(z) = \phi(z_0) \cos \alpha(z - z_0) - - - - - (3)$$

where

A', C' = amplitude coefficients, S, S' = fast-thermal coupling coefficients which depend on the core properties, λ^2 = radial buckling α^2 = axial buckling = $\frac{\pi^2}{H_{ex}}$ H_{ex} = extrapolated height

$$\beta^{2} = \frac{1}{L^{2}} + \frac{1}{\frac{1}{L_{s}^{2}}} + 2\alpha^{2} + \lambda^{2} - - - - - (4)$$

The total geometrical buckling for a finite cylindrical reactor is

$$B^{2} = \alpha^{2} + \lambda^{2} \qquad ---- (5)$$

For a neutron detector whose activation cross-section can be expressed as,

$$\overline{\Sigma}_{total} = \overline{\Sigma}_{th} + \overline{\Sigma}_{f}$$
 ----- (6)

where

 Σ_{th} and Σ_{f} are activation cross-sections averaged over the thermal and fast neutron flux distributions respectively, the total activation Act(r,z), is

$$\operatorname{Act}(\mathbf{r}, z) = \phi_{\mathrm{th}}(\mathbf{r}, z) \overline{\Sigma}_{\mathrm{th}} + \phi_{\mathrm{f}}(\mathbf{r}, z) \overline{\Sigma}_{\mathrm{f}} - - - (7)$$

Substitution of (1) and (2) in (7) and neglecting the axial variation gives the radial variation of the induced activity Act'(r) as

Act'(r) =
$$(\overline{\Sigma}_{th} + S\Sigma_{f})A'J_{o}(\lambda r) + (\overline{\Sigma}_{th} - S'\Sigma_{f})C'I_{o}(\beta r)$$

- - - (8)

Equation (8) can be expressed in the general form

Act'(r) = A $J_{0}(\lambda r) + C I_{0}(\beta r) - - - - (9)$

where the magnitude and sign of C will be dependent on the detector parameters and the core properties.

Equations (3) and (9), valid for homogeneous systems, can be applied to a heterogeneous reactor if the neutron flux is measured at identical positions in each cell so that the macroscopic distribution is not distorted by the microscopic distribution. This implies separability of macroscopic and microscopic flux variations.

Total bucklings were determined by measuring neutron flux distributions throughout the reactor core and fitting the measured radial and axial distributions to equations (9) and (3) respectively.

3. EXPERIMENTAL

3.1 Fuel and Lattice Arrangements

Figure 1 shows a cross-sectional view of the 19-element uranium metal fuel assembly.

The natural-uranium fuel is that described in AECL-759⁽¹⁾. Density of the fuel is $18.93 \pm 0.05 \text{ g/cm}^3$. Thirteen cylindrical slugs each 15.2 $\pm 0.08 \text{ cm}$ long and 1.31 $\pm 0.01 \text{ cm}$ in diameter are sheathed in type 1S aluminum tubes of 1.59 cm o.d. and 1.02 mm wall thickness to form a full-length element.

Elements were arranged in a CANDU-type array, i.e. one element at the center, six on a circle of 3.55 cm diameter and twelve on a circle of 6.85 cm diameter. Each cluster of 19 elements was contained in a type 65S aluminum coolant tube with 8.89 cm O.D. and a wall thickness of 1.57 mm to form a fuel assembly. Table 1 gives the cross-sectional areas of the various materials for a cell.

The minimum sheath-to-sheath spacing of 1.8 mm was fixed by a headpiece from which the elements were suspended. Additional constraints were provided by 0.81 mm thick Al plates drilled to fix the elements on a CANDU array. Four plates were used per cluster, at ~ 5 cm, ~ 60 cm, ~ 110 cm and ~ 160 cm from the bottom of the element sheaths. Not all elements were straight so that the sheath-to-sheath spacing varied from its nominal value by \leq 0.6 mm between positioner plates.

The assemblies were suspended from the rod hangers by a length of stainless steel chain attached to a stainless steel bolt threaded through the headpiece to which the coolant tube flange was bolted. (See Figure 2). This arrangement allowed the bottom of the element sheaths to be suspended ~ 1.7 cm above the bottom of the coolant tube, a feature which allowed free passage of the coolant. Heavy water coolant was expelled through the bottom of the fuel assembly by the introduction of pressurized helium through a Poly-flo coupling located on the top plate of each fuel assembly. (See Figure 3).

Fifty-five fuel assemblies were used for measurements in the triangular arrays with pitches of 22 to 40 cm, inclusive, both with D_2O and He coolants. For the 20 cm lattice a 'driver' region of 36 air-cooled 7-element UO_2 assemblies(4) surrounded the central 55 assemblies to produce criticality with a moderator height less than the fuel height. The 'driver' region was also used in some measurements at 24 cm pitch.

Heavy water purity decreased from 99.74 to 99.70 atom % D₂O throughout the experiments. The purity at any date was obtained from interpolation of the results of analyses of moderator samples taken monthly.

3.2 Determination of the Geometrical Buckling

Total buckling was determined from foil activation measurements made at positions mid-way between fuel assemblies. Figures 4 and 5 show the radial locations of measuring thimbles The thimbles contained three foils for two loading patterns. 10 cm apart at elevations near the vertical flux maximum except for the two central thimbles which contained detectors spaced at 10 cm intervals over the entire moderator height. Detectors fixed to aluminum backing plates were substituted for blank backing plates at the required locations in the suspension The backing plates were joined by lengths of 0.076 system. The wire-foil system was supported cm diameter Zircaloy wire. in an air-filled aluminum thimble of a cruciform cross-section. The main components of the thimble system are illustrated in Figure 6.

Manganese and copper foils were used as neutron detectors. The Mn(11% Ni) circular foils are 1.13 cm diameter, weigh ~ 85 mgm and are fixed to 25 x 20 x 0.5 mm Al backing plates. The foils have been intercalibrated by irradiation to an accuracy of ~ $\pm 0.25\%$. The Cu foils are of identical area, weigh ~ 115 mgm and are glued to the backing plates. Sensitivities of these latter foils were assumed to be proportional to their weights which are known to a relative accuracy of ~ $\pm 0.2\%$.

After irradiation the induced 2.58 hr Mn^{56} activity was measured with a TQQB electroscope while the 12.8 hr Cu⁶⁴ γ -activity was counted with a NaI(T1) scintillation counter. At least two irradiations were performed at each pitch with each coolant.

3.3 Measurement of Spectrum Parameters

Macroscopic neutron-spectrum parameters were measured in D₂O-cooled lattices at pitches of 20, 24, 28 and 40 cm. All measurements were made at moderator positions mid-way between For the 40 cm lattice the relative In/Cu fuel clusters. ratio was derived from the activity induced in Cu foils (as described above) and in similar Pb-In foils, 0.2% In by weight. Cadmium ratios were measured with the Pb-In foils at other listed pitches. For Cd-ratio measurements foils were enclosed in either 0.030" thick Cd or Al boxes cemented to Al backing Detectors were placed every 10 cm along the vertical plates. in thimbles KlW and KlE (Figure 4) and radially throughout the core at either two or three elevations near the flux maximum. Induced γ -activities were counted with a NaI(T1) scintillation counter.

3.4 Critical Height Measurements

An accurate determination of the critical D_2O level in the ZED-2 calandria was required for a determination of foil loading corrections and derivation of axial extrapolation lengths. Measurements of the moderator height were made with the accurate height indicator described in AECL-1505. Height differences due to 'loading' effects were accurate to ~±0.003 cm. Foil elevations with respect to the moderator level, as required for derivation of axial extrapolation lengths were accurate to ~ ±0.2 cm.

3.5 He-Cooled Lattices

Measurements with He coolant in the 55 assemblies were made by expelling the D_2O coolant into the moderator region through a hole in the bottom of the coolant tube. This was accomplished by varying He pressure in a Polyflo tube attached to the top of each assembly which altered the level of the D_2O coolant. (Figure 3). The He pressure - D_2O coolant level relationship was determined experimentally by observing the pressure required for the onset of bubbling from the bottom of the assembly for different D_2O levels. During a He-cooled irradiation all but ~ 1 cm of D_2O was excluded from the assemblies.

4. DATA ANALYSIS AND RESULTS

4.1 Neutron Activation Distributions

The counting data from measurements with the Mn-Ni foils were corrected for exponential decay, detector sensitivities, background and electroscope drift. Relative activities were obtained by normalizing to the activity of a foil located near the maximum neutron flux in the core.

 γ -counting data from measurements with Cu foils were also corrected for exponential decay, detector sensitivities, dead-time losses and background.

Normalized and corrected activities obtained from each irradiation are given in Tables 1-A to 36-A, Appendix A. The radius, elevation and exact position in the core (refer to Figures 4 and 5) are given for each foil. Foil elevations and the critical moderator height h_c are both measured with respect to the ZED-2 zero plane, i.e. the elevation of the central region of the calandria bottom.

4.2 Derivation of the Geometrical Bucklings

Corrected axial distributions, well-removed from the core boundaries, were fitted by the method of least-squares to the cosine function given by equation (3). Bracketed activities as given in the tables of Appendix A were not included in the fit. The average of the two values of α and z_0 obtained from each irradiation is listed in the tables.

Radial distributions were fitted by the method of least-squares to equation (9) but with a fixed value of β calculated from equation (4). Values of L^2 and L^2_s as calculated by the Chalk River lattice recipe POOOF (5) for a moderator condition of 25°C and 99.75 atom % D₂O were used.

These are listed in Table II. The fitted value of α was used and λ was at first approximated by the value obtained from a $J_0(\lambda r)$ fit to activities obtained in a region of constant Cd-ratio. This fitting procedure was adopted after only limited success was achieved when all four parameters, A, λ , C and β were allowed to vary in the fit. Even in the latter cases when convergence was attained the fit error calculated for λ was $\sim 50\%$ and it was concluded that radial bucklings should be obtainable from the measurements to a higher precision. The determination of radial buckling by the above method is described in more detail in (6, 7).

Six values of λ were obtained from each irradiation by combining the west-plus-south (W+S) and east-plus-north (E+N) data for each of the three elevations. $\lambda(n)$, $\lambda(n-1)$ and $\lambda(n-2)$ listed in the tables are the average values of all six results. Here n designates a value derived from a fit to all radial activities, n-1 the results when the outermost point in each set of data is omitted from the fit and n-2 when the two outermost points in each set are omitted. $\lambda^2(n)$ values are used in deriving the geometrical bucklings given in Tables III and IV.

The error quoted for the $\alpha,\ \lambda$ and z_{n} values is

 the error obtained from the "goodness-of-fit" of the data to the assumed distribution function, or

2) the standard deviation in the mean of the several values obtained for each parameter, whichever is the larger.

4.3 <u>Corrections to Buckling Values</u>

Corrections for foil and thimble loading effects and small temperature and purity variations during the period of measurements had to be applied to obtain a consistent set of buckling values to compare with lattice calculations.

Corrections for the 'loading effect' were obtained from measurements of the critical height with and without thimbles and foils in the core. It is assumed that the radial buckling is independent of loading and critical height and therefore $\alpha_{\rm CORR}$ is

- 7 -

where

 $\alpha_{FTT} =$ value derived from the fit.

 Δh = difference in critical heights with and without foils and thimbles.

Temperature and purity coefficients of buckling are derived from POOOF calculations⁽⁵⁾. The buckling values listed in Tables III and IV are corrected to a moderator condition of 25° C and 99.72 atom % D₀O.

No corrections have been applied for variation of the radial buckling with loading because it is assumed to be negligible. This assumption was verified both analytically and experimentally. The experiment consisted of loading the central region of one lattice with extra thimbles and foils. The buckling derived from this measurement agreed with the buckling derived from a measurement with a normal thimble and foil loading. A first-order perturbation theory model based on one-group, four-region homogeneous diffusion theory and the measured differences in critical height, also indicated that flux flattening produced by the increased absorption in the central region of the core due to more thimbles and foils per unit volume (see Figure 4), could be ignored.

4.4 <u>Macroscopic Distribution of Cd-Ratio and Relative</u> <u>In/Cu ratio</u>

Results of the macroscopic In Cd-ratio and the In/Cu ratio measurements for D_2O cooled lattices are summarized in Appendix B. Cd-ratio values (Tables 1-B to 3-B) are ratios of Al-covered to Cd-covered activities for foils irradiated at the same elevation at equivalent radial positions (see Figure 4).

Axial variations of the Cd-ratio are shown in Figure 7 and radial variations in Figure 8.

Results of the In/Cu ratios measured in the 40 cm pitch D_00 -cooled lattice are shown in Table 4-B. Axial and radial variations of relative In/Cu ratios are shown in Figures 9 and 10 respectively.

Average values of the In Cd-ratio or relative In/Cu ratios for the region where they are constant within individual experimental errors of \pm 3% are listed in Table V. This constant region is defined by the dotted lines in the figures. Errors in averages are the standard deviation, σ , of all the values within the constant region for the axial and radial plots.

Values marked with an asterisk have been omitted from the averages. Many of these omissions are justified because the Cd-covers were found to be loose after irradiation.

4.5 Extrapolation Lengths

Analysis of neutron activation distributions yield values for the extrapolation lengths if the core size and critical height are known. The radial extrapolation length can be defined as

$$\delta R = R_{ex} - R_{c} = \frac{2.405}{\lambda} - R_{c}$$

where

R = equivalent core radius defined for a triangular array by $\overset{\text{c}}{\overset{\text{c}}}$

 $R_{C} = 0.525 \text{ d/}\overline{N}$ where d = lattice pitch

N = number of rods, 55 in all cases except the driven lattices.

The total axial extrapolation length δZ_{t} can be defined as

$$\delta Z_{t} = H_{ex} - (h_{c} - 15)$$

= $\frac{\pi}{\alpha} - (h_{c} - 15) = \delta Z_{u} + \delta Z_{1}$

where

 δZ_{ij} , δZ_{ij} = upper and lower extrapolation lengths respectively,

h - 15 = distance in cm from bottom of fuel to the critical moderator level.

Values of δR , δZ_t , δZ_a and δz_1 obtained from the flux distributions for all lattices are listed in Tables VI and VII. Errors quoted are derived from the errors in α , λ , z_0 and h_c .

Figures 12 and 13 show the variation of the radial extrapolation lengths with lattice pitch. Plotted values at each pitch are the average of the measurements listed in Tables VI and VII. Axial extrapolation lengths listed in Tables VI and VII are also plotted as a function of lattice pitch in Figures 13 and 14. Lines in the figures are drawn as guides-to-the-eye only and are not the results of a leastsquares fit to the data.

5. DISCUSSION OF RESULTS

5.1 Buckling

Summaries of buckling values for D_2O and He coolants are given in Tables III and IV respectively, and are plotted in Figure 15 as a function of lattice pitch. Figure 15 shows that the maximum buckling is at a pitch of approximately 25 cm for both coolants with the He coolant giving higher values for the range investigated. These results, combined with the critical height measurements (Tables VI and VII), indicate that a positive reactivity effect results from complete loss of D_2O coolant in the cold-clean critical state for the lattices studied.

At a pitch of 24 cm, with both D_2O and He coolants, three buckling values were obtained. The first value is derived from flux distributions measured in the 55-assembly core when surrounded by a driver region of 36 7-element UO_2 assemblies. The other two values are derived from measurements in the 55-assembly core only. Results agree within experimental errors for the D_2O -cooled lattices but for the He-cooled lattices the "driven" result is slightly outside the experimental errors as compared to the "undriven" results. This may be due to the existence of anisotropy in the air-cooled lattices or larger uncertaintics in the measured bucklings than those quoted. At this pitch the 55-assembly core result is probably more accurate since the neutron streaming effect, if any, will be less due to the higher critical height.

Apart from systematic effects the quoted buckling errors vary from 0.01 m⁻² for 40 cm pitch lattices to 0.09 m⁻² for the 20 cm He-cooled lattice.

5.2 <u>Macroscopic In Cd-Ratios and Relative In/Cu Ratios</u>

The measurements indicate that these ratios are constant within experimental errors at radial positions $\leq 2.6 \times d$ (d = lattice pitch), for all lattices studied. At a pitch of 20 cm the In Cd-ratio at radial positions beyond 2.6 x d does not rise as rapidly due to the presence of the surrounding driver region (see Figure 7.

From the axial plots the region of constant ratio for all lattices studied was found to be:

 40 cm \leq Z \leq h = moderator critical height within experimental errors.

Individual measurements agreed with the average values listed in Table V to better than $\pm 3\%$.

5.3 One-Group and Two-Group Models in Analysis

Although analysis of axial distributions was based on homogeneous, one-group diffusion theory, analysis for the radial component of the buckling was based on two-group theory.

Use of the two-group model was considered to be warranted after analysis of activation distributions obtained with the improved measuring techniques discussed indicated a systematic error in the derived radial bucklings. The error increased as the radius of the region analyzed was decreased. A more detailed report of this investigation and adoption of the two-group formulation is given in (7).

Similar trends did not exist as points within the selected region of the axial distributions were omitted in the analysis of the axial distributions.

5.4 Extrapolation Lengths

Radial and axial extrapolation lengths are plotted in Figures 11 to 14 and summarized in Tables VI and VII. Radial extrapolation lengths derived from measurements with D_2O coolant are generally less than He coolant values for all pitches except 20 cm. From Figures 11 and 12 the radial extrapolation length appears to be constant within ± 2 cm for lattice pitches in the range 24 to 32 cm with either coolant. Total axial extrapolation lengths exhibit the same trend as the radial lengths, i.e. D₂O-cooled values are lower than He-cooled values. Derived upper axial extrapolation lengths are considerably greater than the theoretical values given by 0.71 λ_{tr} . This could be due to neutrons arising from

- 1) backscattering in the graphite reflector and
- 2) backscattering and production in the fuel itself,

since both fuel and moderator extend above the critical moderator height.

Present values of extrapolation lengths and previous ones⁽⁴⁾ should assist in predicting critical sizes of cores in ZED-2. They should also be of value in assessing the effective worth of reflectors.

6. CONCLUSIONS

Buckling values have been obtained for 19-element natural uranium metal fuel assemblies both with D_2O and He coolants for triangular arrays with pitches from 20 to 40 cm, inclusive. For this range of pitches the He-cooled lattices yielded higher bucklings.

Spatial distributions of the In Cd-ratio with D_2O coolant were measured at pitches of 20, 24 and 28 cm and the distribution of relative In/Cu activation rates was measured at a pitch of 40 cm also with D_2O coolant.

Extrapolation lengths derived from flux plots yield information on reflector effectiveness in ZED-2.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. C.H. Millar for helpful discussions concerning this program and also for assistance in the presentation of this report. We are indebted to D.H. Walker, P. Ferrigan, E. Pleau and D. Roberts of the ZED-2 operations staff, to J. Young for assistance in foil counting and to Misses A. Mau and R. Rossow for data processing, assistance in data compilation and typing of drafts. We express our sincere thanks to Mrs. N. Hulbert for typing of tables and the final copy.

- 13 -

REFERENCES

1.	Okazaki, A., Allon, D.F. and Hone, D.W AECL 759
2.	Douglas Point Generating Station - AECL 1596
3.	Glasstone, S. and Edlund, M.C., "The Elements of Nuclear Reactor Theory", p. 243
4.	Beer, G.A. and Hone, D.W AECL 1505
5.	Phillips, G.J private communication
6.	Serdula, K.J. and Green, R.E., Trans. Am. Nuc. Soc., Vol. 8, p. 264
7.	Serdula, K Determination of Radial Buckling in Reflected Systems - submitting to Nuc. Sci. and Eng. for publication.

<u>Table I</u>

	Cr	oss-Sec	tional	Areas o	of Mater	ials Pe	er Cell	
	for	19-elem	nent Nat	ural-ur	anium M	letal As	sembly	
Triangular Lattice Pitch (cm)	20	22	24	26	28	32	36	40
Cell Area (cm ²)	346.41	419.16	498.83	585.44	678.97	886.82	1122.38	1385.65
Uranium Area (cm ²)	25.69	25.69	25.69	25.69	25.69	25.69	25.69	25.69
Moderator Outside Coolant Tube (cm ²)	284.33	357.09	436.76	523.36	616.90	824.71	1060.30	1323.58
Moderator Inside Coolant Tube (cm ²)	20.13	20.13	20.13	20.13	20.13	20.13	20.13	20.13
Aluminum (cm ²)	13.36	13.36	13.36	13.36	13.36	13.36	13.36	13.36
Air (cm ²)	2 . 90	2.90	2.90	2.90	2.90	2.90	2.90	2.90
<u>Moderator</u> Metal (D ₂ O COOLant)	11.85	14.68	17.78	21.16	24.80	32.89	42.06	52.30
W = 3 (11							

<u>Moderator</u> 11.07 13.90 17.00 20.37 24.01 32.10 41.27 51.52 Metal (He Coolant)

-

-

-

-

Table II

Values of L^2 and L_s^2 for

Lattices of 19-element Natural-Uranium Metal Assemblies

as Calculated by POOOF*

Triangular	D ₂ 0-C	oolant	He-Co	olant
Pitch (cm)	¹² (cm ²)	L ² s(cm ²)	L ² (cm ²)	L 2 s (cm ²)
	01 <u>0</u> 9	127 8	83.66	156.7
20	01.00	131.0	05.00	
22	102.5	134.3	105.0	150.2
24	126.6	131.6	127.7	143.4
26	153.0	129.6	153.8	139.3
28	185.0	128.1	184.3	136.3
32	255.8	125.9	253.0	132.0
36	339.4	124.4	334.0	129.1
40	435.8	123.4	427.5	127.1
_				L

*For moderator conditions of 25° C, 99.75 atom % D_{2}°

<u>Table III: Buckling Summary - D₂0 Coolant - 19-element Natural-Uranium Metal Fuel Assemblies</u>

~

~

.

Table	Pitcl. (cm)	$\alpha^{2}(m^{-2})+$	λ ² (m ⁻²)	∆ ^B ² (m ⁻²)	$\Delta B^{2}_{\rho(m^{-2})}$	B ² (25 ^o c) (99.72 At ∦) (m ⁻²)	B ² Average (25°C, 99.72 % D ₂ O)(m ⁻²)
1-A	S	2.131±.009	2.352±.084	200'-	000.0	4.476±.084	
2-A	ß	2.126±.016	2.348±.070	700, –	0,000	4.467±.072	4.473±.064
3-A	20	2.134±.016	2.348±.032	700, –	000,0	4.475±.036))
A-4	22	2.377±.024	3.265±.033	700. –	+ 003	5.638±.041	
5-A	22	2.388±.032	3.294±.077	- ,005	+'005	$5.679\pm.080^{\circ}$	5.658±.060
6 - A	24	3.700±.032	2.231±.033	- 008	+,008	5.931±.046 *	
7-A	ЧС	2.974±.018	3.025±.024	- 008	900'+	5.997±.030	
8 - A	54	2.968±.o38	3.053±.046	700. –	+,004	6.018±.060 }	6.co8±.o45
8-A	26	3.266±.026	2.765±.053	900'-	+.003	6.028±.059 、	
lo-A	26	3.228±.040	2.780±.031	900'-	+.002	6.oc4±.o51 }	6.c16±.o55
11-A	28	3.246±.021	2.492±.011	600'-	006	5.723±.024 、	
12-A	28	3.249±.035	2.493±.018	600'-	006	5.727±.039	5.725±.032
13-A	32	2.905±.032	2.066±.010	010	011	4.950±.034、	
14-A	32	2.912±.025	2.063±.005	010	011	4.954±.026 }	4.952±.030
15-A	36	2.388±.019	1.783±.006	008	016	4.147±.020、	
16 -A	36	2.381±.023	1.793±.005	007	016	4.151±.024 }	4.149±.022
17 -A	0 1	1.843±.008	1.618±.005	011	025	3.425±.009 、	
18 -A	숭	1.836±.009	1.611±.005	011	025	3.411±.010 }	3.418±.010
-							

-17-

+ Loading correction included * Not included in average - see text, 5.1.

Table	Pitch (cm)	$\alpha^{2}_{(m^{-2})} \uparrow$	λ ² (n ⁻²)	ΔB_{T}^{2} (m ⁻²)	Δ ^B ² (m ⁻²)	в ² (25 ⁰ с) (99.72 ас.%) (m ⁻²)	B ² Average (25 ^o c,99.72 At.% D ₂ 0)(m ⁻²
19-A	ନ	2.225±.012	2.395±.147	006	001	4.613±.147	
20-A	R	2.204±.011	2.366±.049	006	001	4.563±.050 }	4.587±.087
21-A	50	2.217±.014	2.375±.063	700	001	4.585±.065	
22-A	52	2.562±.026	3.23 4±.038	006	+.002	5.792±.046 }	5.817±.052
23-A	22	2.574±.025	3.272±.052	006	+.002	5.842±.058 ^J	
24-A	24	3.834±.034	2.234±.033	008	700.+	6.067±.047*	
25-A	24	3.202±.026	2.954±.023	008	+.003	6.151±.035 }	6.176±.046
26 - A	24	3.189±.032	3.018±.047	700	+.002	6.202±.057 ^J	-
27 -A	26	3.451±.024	2.741±.029	9oc	+.002	6.188±.038 }	6.186±.041
28-A	26	3.450±.037	2.7 ⁴ 0±.024	006	+.001	6.185±.044 ⁾	
29-A	28	3.576±.029	2.491±.010	010	004	6.053±.031 }	6 .0 30±.030
30-A	28	3.557±.027	2.464±.012	-,010	004	6.007±.030 ^J	1
31 - A	32	3.236±.025	2. 054±.007	010	010	5.270±.026 }	5.281±.026
32-A	32	3.249±.026	2.064±.007	- ,010	011	5,292±.027 ^J	N
33-A	36	2.696±.o33	1.771±.004	600'-	01 ⁴	4 444±.033 }	4.442±.030
34- A	36	2. 693±.025	1.769±.005	- ,008	+10	4.440±.c26 ^J	•
35 -A	0 1	2.165±.009	1.603±.004	-,012	02 [⊥]	3.732±.c10 }	3.729±.009
36- A	01	2.157=.007	1.605±.004	-,012	021	3.726±.co8 ^J	, ,)
+ Loa	ding con	rrection includ	eđ				
* Not	include	ed in average -	see text, 5.1				

<u>Table IV: Buckling Summary - He Coolant - 19-element Natural-Uranium Metal Fuel Assemblies</u>

-18-

<u>Table V</u>

-

.

Average Values of the Macroscopic In Cd-Ratio or Relative In/Cu Ratio Measured at Cell Boundaries <u>as a Function of Triangular Lattice Pitch</u>

Triangular Lattice Pitch (cm)	In Cd-Ratio	Relative In/Cu Ratio
20	1.982 ±.006	
24	2.525 ±.006	-
28	3.197 ±.007	-
40	-	59.61 ±.07

			TA-erement 1	20-COOTED NALU					
Table	Pitch (cm)	R _{ex} (cm)	ξR (cm)	H ex (cm)	cm) cm)	cm)	5 Z _t (cm)	δZ (cm)	5^{2}_{1} (cm)
1-A	8	156.82±2.79	56.66±2.79	216.41±.45	191.64	89.53±.26	39.77±.49	6.09±.46	33.67±.41
2-A	8	156.95±2.34	56.79±2.34	216.75±.84	c7.191	89.54±.17	40.05±.86	6.22±.65	33.84±.62
3-A	8	156.96±1.09	56.8o±1.09	216.59±.81	192.09	89.76±.31	39.60±.83	6.o1±.68	33.58±.65
4-A	22	133.09±.67	47.44±.67	205.40±1.06	182.75	85.66±.39	37.65±1.08	5.61±.87	32.04±.85
5-A	22	132,52±1.54	46.87±1.54	204.56±1.37	182.33	85.52±.35	37.23±1.39	5.47±1.05	31.76±1.03
6-A	24	161,03±1.20	40.84±1.20	163.33±.71	143.39	66.83±.16	35.44±.74	5.36±.56	30.09±.53
7-A	24	138,28± . 55	44.85±.55	183.28±.56	162.64	76.64±.10	35.64±.59	5.64±.45	30.00±.40
8 - A	24	137.63±1.05	44.20±1.05	183.10±1.18	162.28	76.14±.52	35.82±1.20	5.41±1.01	30.41±.99
9-A	26	144.64±1.38	43.42±1.38	174.90±.70	156.04	73.85±.27	33.86±.73	5.26±.60	23.6o±.57
10-A	26	144,25±.81	43.03±.81	175.56±1.09	155.67	72.97±.50	34.89±1.11	5.08±.94	29.81±.92
11-A	28	152,36± . 33	43.36±.33	174.99±.55	155.02	72.81±.13	34. <i>9</i> 7±.59	5.29±.46	29.69±.41
12-A	28	152.31±.55	43.31±.55	174.90±.93	155.00	73.00±.11	34.90±.96	5.45±.70	29.45±.67
13 - A	32	167,30± . 42	42.72±.42	184.88±1.03	164.83	77.45±.21	35.05±1.05	5 . 06±.79	29.99±.76
14-A	32	167,46±.22	42.38±.22	184.63±.78	164.82	77.29±.27	34.81±.81	4.79±.65	32 . 03±.6:
15-A	36	180,12±.30	39 <i>.3</i> 7±.30	204.25±.81	185.05	87.18±.30	34.co±.83	4.15±.68	29.84±.65
16- a	36	179,61±.27	39.46±.27	204.36±1.01	185.06	87.21±.29	34.30±1.03	4.33±.80	29.97±.77
17 -A		189.10±.25	33.38±.25	232.59±.52	215.66	102.48±.15	31.93±.52	3.12±,44	28.82±.40
18 - A	앍	189.50±.31	33.78±.31	232.99±.59	215.72	102.49±.25	32. <i>2</i> 7±.62	3.27±.52	29.01±.48

Table VI: Summary of Extrapolation Lengths Measured in ZED-2 19-element D_O-cooled Natural Uranium Assemblies -20-

-

-

•

			19-ele	ment He-cooled	Natural Ui	canium Assemb	lies		
Table	Pitch (cm)	R EX	5R (m)	H ex	, h	N	52t	5T _t	62 ₁
		(m)	1	(cm)	(cm)	(cm)	cm	(cm)	(cm)
19 - A	50	155.4o±4.78	55.24±4.78	211.81±.57	184.00	84.65±.10	42.81±.61	6.55±.46	36.25±.42
20-A	8	156.35±1.61	56.19±1.61	213.06±.54	184.25	84.84±.23	43.81±.57	7.12±.49	36.69±.44
21-A	8	156.04±2.07	55.88±2.07	212.07±.67	183.85	84.86±.19	43.22±.70	7.05±.55	36.18±.51
22-A	22	133.73±.78	48.08±.78	1 97.68±.9 9	172.20	79.53±.38	40.48±.01	6.17±.82	34.31±.80
23-A	22	132.95±1.07	47.30±1.07	196.84±.96	171.82	79.47±.37	40.02±.98	6.07±.80	33.95±.78
24-A	24	160.921.21	40.73±1.21	160.94±.72	137.07	63.44±.14	38.87±.75	6.84±.56	32.03±.53
25- A	54	139.924.55	46.49±.55	176.51±.72	154.09	71.79±.16	37.42±.74	5.96±.57	31.47±.53
26- a	54	138.45±1.08	45.02±1.08	176.60±.89	153.83	71.15±.55	37.77±.92	5.62±.86	32.15±.84
8-7S	26	145.27±.77	44.05±.77	170.04±.60	147.76	69.22±.20	37.28±.63	6.48±.51	30.80±.47
28-A	26	145.284.63	44.06±.63	169.76±.92	147.45	68.23±.57	37.31±.94	5.66±.89	31.65±.86
29- a	28	152.38±.32	43.38±.32	166.76±.68	146.50	68.35±.18	35.26±.71	5.23±.55	30.03±.51
30 - A	28	153.22±.36	44.22±.36	167.19±.63	146.50	68.25±.17	35.69±.66	5.39±.52	30.30±.48
31 -A	32	167.81±.28	43.23±.28	175.16±.68	154.40	71.85±.42	35.76±.70	5.o5±.67	30.73±.65
32- a	32	167.4o±.27	42.82±.27	174.80±.70	154.40	71.97±.42	35.4o±.7o	4.97±.68	30.43±.65
33 A	36	180.73±.22	40.58±.22	191.96±1.16	171.23	80.17±.30	35.73±1.18	4.92±.90	30.81±.87
34- A	36	180.80±.24	40.65±.24	192.12±.88	171.27	80.024.41	35.85±.90	4.81±.77	31.c4±.75
35- A	支	189. <i>9</i> 7±.22	34.25±.22	214.65±.42	196.27	92.90±.26	33 . 38±.47	3.95±.45	29.124.39
36 - a	ę	189.85±.25	34.13±.25	215.03±.35	196.30	92.85±.22	33.73±.41	4.o7±.39	29.67±.33

Table VII: Summary of Extrapolation Lengths Measured in ZED-2 19-element He-cooled Natural Hranium Accemblics

-

-

•

-21-

FIGURE I - CROSS SECTION OF 19 ELEMENT NATURAL URANIUM METAL ASSEMBLY.

FIGURE 2 PARTIAL CUT-AWAY OF 19-ELEMENT NATURAL URANIUM FUEL ASSEMBLY

.

FIGURE 3 COOLANT EXCLUSION CIRCUIT IN ZED-2

24

-		- 2					V = VERTICAL DISTRIBUTION	O= TEST FUEL ASSEMBLIES	⊗8 × = FOI L THIMBLES
76543210 234567	0 0	0 0 0 0 0		0 0 0 0 0 0 0 0	80808080×0×0×0×0×0×	0 0 0 0 0 0 0 0		0 0 0 0 0 0	0 0
	0	z	Σ	ر	¥	7	-	x	ს

-

FOIL LOADING PATTERN A (6 DIFFERENT RADII)

FIGURE 4

	IGURE 5	IE
ADII)	OIL LOADING PATTERN B (I2 DIFFERENT R	²
U = DRIVER ASSEMBLIES		is.
BARX = FOIL THIMBLES		ഗ
0 = TEST FUEL ASSEMBLIES		I
V = VERTICAL DISTRIBUTION	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7
		×
	0 0 0 0 0 0 0 0 0 0 0 0 0	
		Σ
	じ O O O O O O	z
		۵

-26-

-28-

RADIAL VARIATION OF IN CD-RATIO (D20-COOLANT) FIGURE 8.

-29-

FIGURE 9 AXIAL VARIATION OF RELATIVE IN/CU RATIO FOR 40 cm D20- COOLED LATTICE

FIGURE II. RADIAL EXTRAPOLATION LENGTHS &R, MEASURED IN ZED -2 (D20 COOLANT)

&R, MEASURED IN ZED-2 (He-COOLANT) FIGURE I2: RADIAL EXTRAPOLATION LENGTHS

- 34-

FIGURE 14. AXIAL EXTRAPOLATION LENGTHS, SZT(TOTAL), SZL(LOWER) AND SZU(UPPER)

- 35 -

FIGURE IS. BUCKLINGS FOR 19-ELEMENT NATURAL URANIUM METAL FUEL ASSEMBLIES

APPENDIX A

Summary of Relative Activation Distributions Measured in Cores of 19-element Natural-Uranium Metal Assemblies

.

. -

. .

-

Coolant)
20
<u>m Hex Lattice (</u>)
Ū
δi
- 1
Data
Buckling
••
1-7
Table

55 19-element U-metal Clusters plus a 'Driver Region' of 36 7-element UO₂ (air-cooled) Clusters

					8	ନ	
: % D,0	Ч	К7	70.00	. 1980 108 108 108 108	rage ±0.26	00 • 0∓	
9.708 at	N	N	51.96	. 8551 . 8563 . 8563	Ave. 89.53	0500 7174-17	
<u>lerator</u> ity : 9	ы	КS	50.00	. 8709 . 8699	Thimble KIE 89.27	1.4501 4599 ±0.	
1.1°C Pur	ы	K3	30.00	. 9608 . 9681	к1w 89.79	1.4533 -1) 1.	
remp : 2 ⁴	z	ц	17.32	1.0015 1.0099 1.0040	Z _o (cm)	a(m ⁻¹) a _{corr} (m	
C.	ы	КЛ	10.00	.2484) .5288 .5288 .5288 .5288 .5288 .5288 .5288 .5288 .5288 .5288 .5288 .5299 .8696 .5302 .5302)			
- 191.642	З	к <mark>1</mark> *		(.2521) .5221) .5221) .5221) .5221) .5221 .5221) .5221) .5221) .5221) .9609 .9609 .9609 .95906 .95906 .95906 .95906 .95906 .95906 .9517 .7517 (.6615)) (.6255))			
" ,4	ט ע ן	b	17.32	. 9901 . 0030 . 9954	ε	õ	
Foils	3	ß	30,00	4759 1967 1969	6 ± 027	8 ±.016	
eseuen	м	КŞ	50.00	.8775 .8857 .8755	λ(m ⁻¹) 1.533	1.582	fit.
r e N	S	н	51.96	.8712 .8775 .8779) (u))(n-1)	radial 1
πуоι∕ (v	M	к7	70.00	.7953			mitted 1
	Direction	Thimble	Radius cn	Elevation 170 1100 1100 1100 1100 1100 100 100 10		*	K1W O

•

.

- 38 -

attice (D ₂ 2 Coolant)	
Hex L	
Ð	
8	
Data	
g	,
i l	,
Buck	
••	
2-A	
Ø	
Tabl	

.

.

55 19-element U-metal Clusters plus <u>r Region</u> of 36 7-elenent UO, (air-cooled) C

	DO D	v Ei	КТ	70.00	.7846 .7890 .7819		±0.17	±0.0056	
	9.708 at	N	N	51.96	4788. 8457 8379		89.54	1.4494	<u>3056</u>
ωl	derator rity:9	ы	ĸ5	50.00	.8514 .8612 .8501	Thimble KlE	89.71	1.4550	4580 ±0.(
Cluster	4.2°C Pu	ы	КЗ	30.00	. 9361 . 9457 . 9386	МIМ	89.38	1.4439	-1) 1.1
-cooled)	Temp : 2	N	Г	17,32	.9723 .9878 .9771		zo(cm)	$\alpha(m^{-1})$	a _{corr} (n ⁻
UO ₂ (air	1 E	ы	Кl	00, CI	(.5203) .5387 .5387 .5387 .5387 .5387 .5387 .9945 .9576 .9873 .9873 .9873 .9873 .9873 .9873 .9873 .9873 .9873 .9873 .9873 .9873 .9576 .9576 .9576 .9576 .9576 .9576 .9576 .95776 .9576 .95776 .97777777777777777777777777777777777				
<u>-elenent</u>	19701	м	Κ.	10,00	(.5165) .6335 .6335 .9454 .9454 .9454 .9454 .9454 .9487 .9487 .9487 .9487 .9487 .9487 .9487 .9487 .9487 .9487 .9487 .9487 .9487 .9487 .9487 .9487 .9487 .94590 .16590 .16590 .16590				
of 367-	"" ,	ູ້	ŗ	17.32	. 9705 . 9802 . 9709				
dion	Foils	W	КЗ	30.00	. 9353 . 9457 . 93457	•	±.0228	±.0210	±.0298
river Re	nganese	М	К5	50.00	. 8542 . 8564 . 8567	(m^{-1})	1.5323	1.5649	1.5810
01 E	Ma	ß	н	51.96	.8501 .8589 .8484		~	-1)	-2)
	n)/1964	M	К7	70.00	.7819 .7785		ת)ל	ת)ע	ת)ע
	<u>Mar. 13 (p</u>	Direction	Thimble	<u>Radius cm</u>	Elevation 16 16 16 16 16 16 16 16 16 16 16 16 16				

-39-

0 Coolant)	
9	
Lattice	•
X	
Ē	
5	
8	
1	
Data	
ckling	
BG	
••	
3-A	
<u>Table</u>	

55 19-element U-metal Clusters plus <u>a 'Driver Region' of 36 7-element UO₂ (air-cooled) Clusters</u>

													Moderat	JO		
Mar. 13 (a	n)/1964		Maı	nganese	Foils		ມີ	= 132.0(51 cm		Temp	: 24.2	c Purit	у: 99.	708 at	% D ₂ 0
Direction	M	E	S	S	ы	м	ы	И	ы	ы	м	ы	N	ß	E	м
Thimble	КІW	Kle	ß	J2W	LZE	кзм	кЗЕ	MLE	JłE	цЭЕ	K5N	к5в	NO	нгw	тбв	к7w
<u>Radius cm</u>	10.00	10,00	17.32	26.46	26.46	30.00	30.00	36.06	43.58	45.82	50.00	50.00	51.96	55.68	62.44	<u>70.00</u>
Elevation																
Ę																
180	(.2489)	(.2456)														
170	(.3886)	(.3868)														
160	.5164	.5150														
150	.6326	.6323														
2	.73 ⁴⁰	.7305														
0°:-	.8200	.8231														
8	.8897	.8933														
110	.9391	.9463			1000		0000			0000	010	0101	0000	0100	7 205	7706
100	.9667	.9745	.9597	.9382	9324	9237	.9239	0212.	, et o			1040	0/100		6001.	
88	1.0000	.9826	7070.	0846.	9438	.9344	. 9372	1915.	4050.4	CT 10.	+0C0.	8202	1,00. 1,000 1,000 1,000	00200. 8154	7783	7697
8	.9645	9734	61.66.	1056.	,9340	.9400	+024.	0775.		0100.	DLD·	3400.	1,00.		6	
6 G	.9364 8893	.9457 8054														
3 <u>6</u>	8204	.8298),	-						ין לייי; לTT			
√ ₹	.7344	.7472				ш/у	~					KIW	FUE	, Ai	verade	
on M	(.6478)	(.6586)	~		(u)ע) (u)	1.53	[0.± 52]	106			z (an)	70.02	89.45	8.	76 ±0.3	г
ନ୍ସ	(.5916)	(.5978)	~		•							, 1 1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
10	(.6059))(.6066)	~		у(n-1	.) 1.50	89 ± 0%	279			a(m +)	1,405	L.444	+ T.44		+00
					у(n-2	1.50	71 ± .0	386			aa	1-1) 1	.4608 ±c	0.0054		
					•	•					COLL					

۰.

 $\alpha_{corr}(m^{-1})$ 1.4608 ±0.0054

Table 4-A : Buckling Data - 22 cm Hex Lattice (D20 Coolant)

													MO	derator		
Mar. 10 (a	am)/196	4		Mangane	se Foil	ß	ŗ	c = 182	.746 cm		Тe	mp:24	.l ^o c Pui	rity :	99.709	at % D ₂ 0
Direction	ß	ы	ß	ω	ម	м	ы	N	ы	ы	м	ы	N	w	ы	З
Thimble	WIN	Kle	бŗ	JZW	LZE	кзм	KJE	MlE	J 4 E	IJE	K5W	KSE	ON	Н2W	LGE	к7w
<u>Radius cm</u>	00'11	11.00	19 . C5	29.11	29.1.	33.00	33,00	39.67	47.94	50.40	55.00	55.00	57.16	61.25	68,68	00
Elevation															***	222 · · ·
Ð																
) 0/T	(.2685)((.2679)														
160	(2814.)	(.4202)														
150	(.5570)((.5589)														
140	.6789	6827														
130	.7873	.7922														
120	.8757	.8778														
110	.9419	.9450														
100	.9856	.9898														
86	L.0050	1.0125	.9757	.9533	.9512	.9331	.9285	.8982	.8380	.8248	.7980	.7957	.7686	·7464	.5913	4691.
38			2022		.9404	9252	.9299	8968.	.8357	.8194	.7960	.7923	7673	.7469	7065.	.7644
<u>ک</u> رو	2012.	9402. at 10	5166.	.9254	.9206	. 8994	906.	.8713	.8108	.7976	.7720	.7721	7462	.7272	.5706	.7476
3 <u>R</u>	. 8535	.8728														
ş	.7653	.7850														
୍କ ନ	.6703)(.6817)				-1' - 1'							դի imb1 c			
ନ୍ନ	.5941)(. 6023)				/ m/v						W L M		, k		
) IO	.5576)(. 5632)			У(n)	1.8070	[600 . ± 1			N,	(cm)	86.05	85.27	85.6	56 ±0.3	
					\(n−1)	1.7657	. ± ,0231			8	(m-1)	1.5374	1.5216	5 1. 520	95 ±0.00	70
					(a-u)v	1 7850	10000			i) (1 1			
								-		ອັ	orr(m		.5419 ±0	670c.		

-41-

							·· -		e	
		8 D20	ы	К7	77.00		. 7671 . 7646 . 7450	erage 2 ±0.35	B ±0.010	
		9.711 at	N	N	57.16		.7428 .7428	Av 85.5	1.535	0.0103
	ml	<u>derator</u>	មា	К5	55.00		.7959 .7725	Thimble KlE 85.17	1.5255	1.5453 ±
<u>Coolant</u>	Cluster	. 4°C Pur	E	КЗ	33.00		. 9310 . 9293 . 9245	кім) 85.86) 1,5460	(m ⁻¹)
ice (D ₂ 0	plus -cooled)	<u>emp : 24</u>	N	Ъ	19.05		. 9983 . 9709	z, cm	α(n-1	acorr
<u>Hex Latt</u>	Clusters TO ₂ (air.	E EJ	ы	Кl	11.00		(.5559) .6799 .6799 .6799 .8753 .9432 .9432 .9889 .9889 .9889 .9889 .9867 .9889 .9399 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .78556 .78567 .78556 .78567 .78556 .78567 .78556 .78567 .78556 .78556 .78567 .78556 .78567 .77567 .78567 .77577 .77567 .77567 .77577 .77577 .77577 .775777 .775777 .77577777777			
- 22 cm	U-metal element	182.334	м	Кl	11.00		(.5578) (.55704) (.5504) (.5504) (.5504) (.5504) (.55704) (.5578) (.5578)			
19 Data	element of 367-	۱۳ ۲	0 0	Ь	<u>19,05</u>		. 9335 . 9556			
Bucklir	55 19-6 eqion' o	Foils	3	K3	33.00		.9316 .9267 .9015	±.0211	±.0322	±.0239
e 5-A :	river Ro	nganese	м	K5	55.00		. 7 <i>9</i> 73 . 7973 . 7736	λ(m ⁻¹) 1.8148	1.7901	1.8292
Tab 1	a 1	Mai	ß	н	57.16		.7864 .7835 .7642	(u)V)/(n-1)	`A(n-2
		/1964	М	КŢ	77.00		.7672 .7655 .7449			
		Mar. 6 (pm	Direction	Thimble	Radius cm	Elevation cm	59558819 88288399 88288399 88288399 88288399 88288399 88288399 8828839 88380 88389 883			

-42-

(D ₂ 0 Coolant)
<pre>x Lattice</pre>
n Hex
Ð
ดี
I I
Data
Buckling
•
6-A
Table

. .

-

•

55 19-element U-metal Clusters plus a 'Driver Region' of 36 7-element UO₂ (air-cooled) Clusters

	ଧି		ç	5 C C C		10	83	I
1	년 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- K7	72	525. 242.		rage ±0,1€	±0.05	
	<u>19.705 a</u> N	2	62 35	. 8090 1686		Aver 66.83	1.9176	083
oderator	E E	К5	60.00	. 7915 . 7915	Thimble	Kle 66.82	1.9212	236 ±0.0
¥, 2000	E E	K3	36.00	.9482 .9429 .9032		K1W 66.84	1.9140	¹) 1.9
Ē	Temp : 2	ц	20.79	9986 9568		z (cm)	α(m-1)	acorr(m ⁻
ب ۱	E E	Kl	12.00	(.1234) (.3402) (.3402) (.5271) .6891 .6891 .6891 .9213 .9213 .9213 .9213 .9213 .9213 .9269 .9269 (.7929) (.7929) (.7929)				
	<u>т</u> т	Kl	12.00	(.1264) (.3410) (.5260) .5849 .8150 .9135 .9135 .9135 .9135 .9829 .9135 .98292 .98292 .98292 (.7825) (.6244)				
ي.	ິ ຊິ ນ	ŗ	20.75	. 9897 . 9835 . 9448				
с Г; С	M	K3	36,00	. 9496 . 94114 . 8988		±.0111	t ±.0200	i ±.0253
	W	К5	60.00	. 8295	λ(m ⁻¹)	1.4935	1.487 ⁴	1.5046
Σ	S	н	62.35	.8197 .8064 .7760		у(п)	λ(n−1)	λ(n-2)
шЭр Г/ /ш	M	К7	34.00	6813 6802 6529				
Mar 23 (a	Direction	Thimble	Radius cm	Elevation 146 136 136 106 106 76 88 88 86 86 86 86 10 80 86 86 86 86 86 86 86 86 86 86 86 86 86				

									OW	derator					;	
eb. 28 (am),	11964		Mar	iganese	Foils		Τe	mp : 24	1.0°C Pu	rity :	99.714	at & D2	0	ہ ں	. 162,64	E O
Direction	3	р Ш	s	s	щ	м	ជ	N	ស	ы	¥	ы	N	S	ы	м
Thimble K	ΤW	KlE	0Ľ	JZW	LZE	кзи	КЗЕ	NlE	J4E	IJE	KŞW	K5E	NO	Н2W	16Е	кŢ₩
Radius cm 12	100.	2.00	20.78	31.75	31.75	36.00	36.00	43.27	52.30	54.98	60,00	00,00	62.35	66.52	<u>74.93</u>	84.00
Elevation																
Ð																
150 (.2 140 (.4	963)(626)(.	3001) 4687)														
130 .6	128	6200														
120 .7 110 .8	1472	.7492 8562														
001	279	.9375														
88	065 L	0110.	.9875	1740.	4846.	.9249	.9255	.8928	.8239	.8058	.7722	.7655	-7450 -7450	.7134	.6424 6371	.6824 6760
70 1.0	0000 1	.0085 0765	.9805 0438	.9431	.9453 9140	.9210 .8884	,9198 8882	.8578	C618.	5002. 7748	.7433	.7357	1204	.6852	.6163	.6535
38		.9152	2.													
₽.; ₽.;	3153 1201/	.8258											ין להי לש			
	5238) (.6300)				λ(m ⁻¹)						K.W	KlE		Average	
10	5575) (.5623)			(ս)	1.739	12 ±.006	6		N	(IJ)	76.72	76.55	5 76	.64 ±0.	D
					(n−1)),	1.693	13 ±.016	6		8	(m-1)	1.7175	1.7107	7 1.7	.0± 141	0052
					(2-u) <u>v</u>	1.682	13 ± .021	0		5	- m)	1) I	.7244 ±C	0.0052		
										-	COLL	•				

<u>rable 7-A : Buckling Data - 24 cm Hex Lattice (D₂0 Coolant)</u>

		<u>Tabl</u>	le 8-A :	Buckli	ng Data	- 24 cm	Hex Lat	$\frac{tice}{D_{0}}$	Coolan	lt)		
Feb. 24 (F	m)/1964		Mangane	se Foil	ß	Temp :	24,1 ⁰ C P	Moderat urity : {	or 99.716 at	ч 0 ² 0 у	c = 162.	277 cm
Direction	М	S	M	М	S	м	ы	N	ы	щ	N	ы
Thinble	к7	Н	КS	КЗ	'n	ĸ	Kl	ц	КЗ	КŞ	N	КŢ
<u>Radius cm</u>	84.00	62.35	60.00	36.00	20.79	12,00	12.00	20.79	36.00	00'09	62.35	84.00
Elevation cm							1					
2 2 2 2 2 2 8 8 2 9 2 2 2 2 2 2 2 2 2 2	.6794 .6753 .6529	.7562	.7710 .7690 .74443	.9258 .9235 .8911	. 9894 . 9838 . 9525	(.2916) (.4585) .6588 .6588 .7390 .8465 .9281 .9281 .9553 .9553 .9553 .9322 .9322 .9322 .9322 (.7139) (.5579)	(,2902) (,4605) ,6134 ,7403 ,8465 ,9330 ,9892 1,0151 ,9892 ,9171 ,9858 ,91711 ,917111 ,917111 ,91711 ,91711 ,91711 ,917111 ,917111 ,91711 ,917	. 9955 . 9933 . 9607	. 9285 . 9225 . 8925	.7701 .7631 .7392	.7470 .7456 .7205	.6781 .6767 .6556
			$\lambda(m^{-1})$						KIW	Thimble KlF	Aver	
		(u)V	1.7474	±.0133				2 ₀ (cm)	76.66	75.62	76.14	49.52
)(n-1)	1.73c4	±.0 <i>2</i> 74				α(m-1)	1.7268	1.7047	1.7158	1110.œ
		λ(n-2)	1.7331	±.0329				^a corr ^{(m⁻}	-1) 1.7	.227 ±0.0	111	

•

.

$\alpha(m^{-1})$ 1.7945 1.7980 1.7962 to 007
T = 0.000

<u>Table 9-A : Bıckling Data - 26 cm Hex Lattice (D₂0 Coolant)</u>

E	I		I					
<u>5</u> .667 c	ы	КТ	91.00	. 6052 . 5893		tage ±0.50	111C.O±	
ی ب ب	и	N	67.55	.7201 .7240 .7033		аvеі 72.97	1.7895	.0111
с Д Д С С С С С С С С С С С С С	ы	КS	65.00	.7366	Chimble	72.47	1.7784	o∓ 7967.
) Coolant ar 9.718 at	ш	КЗ	39.00	.9068 .9147 .8935	[73.47	1.8006	n ⁻¹) 1.
cice (D ₂ (Moderato Mrity : (N	ц	22,52	.9760 .9842 .9582		2 ⁰ (cm)	α(m-1)	dcorr (n
Hex Latt 24.2 ⁰ C Pr	ы	Kl	13.00	(.1708) .5262 .6683 .7533 .6683 .8896 .9596 .9834 .9834 .9834 .9834 .9834 .9835 .9835 .9835 .9835 .9833 .5533)				
- 26 cm Temp:	м	Кl	13.00	(.1728) (.3585) (.3585) (.3585) (.3585) .5265 .6728 .6728 .9921 .9929 .9969 .9753 .9146 .9753 .9146 (.7257) (.5256) (.5279)				
ing Data	S	IJ	22.52	.9731 .9752 .9520				
: Buckl. se Foil.	М	КЗ	39.00	. 9085 . 9104 . 8863		±.0094	±.0088	±.0082
.e 10-A Mangane	М	КS	65.00	7408 7437 7242	$\lambda(m^{-1})$	6672	6719	:.6550
Tabl	S	н	67.55	.7252 .7292 .7104)(n)	λ(n-1)	λ(n-2)
m)/1964	М	К7	91.00	. 6014 . 5895				
Feb. 19 (a	Direction	Thimble	<u>Radius cm</u>	Elevation cm 140 140 120 80 80 70 80 70 80 70 80 100 100 100 100 100 100 100 100 100				

•

.

-

-47-

	E					000		57
	155.015	ы	КŢ	98.00		-556 -561-	rrage . =0.13	00°0=
	۳ م	N	N	72.75		.7058 .7096 .6922	Ave 72.81	1.7953 .0057
nt)	at % D ₂ 0	ы	К5	70.00		.7303 .7336 .7126	Thinble KlE 72.68	1.7912 8018 ±0
0 Coola	cor 99.726	ы	КЗ	42.00		. 9035 . 9114 . 8860	кім 72.94	1.7593 m ⁻¹) 1
tice (D,	Moderat urity :	N	ц	24.25		.9795 .9831 .9598	z _o (cm)	α(m ^{-l}) α _{corr} (
n Hex Lat	23.6°c	ы	Kl	14.00		(.1580) (.3484) 5173 6661 7937 8935 9571 9797 9797 9797 9797 9797 9797 979		
a - 28 ci	Temp :	M	Хl	14.00		(.1593) .5184 .5184 .6660 .8936 .9936 .9994 .9994 .9994 .9994 .9933 .9933 .9334 .9334 .9334 .9334 .9334 .9336 .9326 .9336 .9326 .9336 .9326 .9336 .93266 .9326 .9326 .9326 .9326 .9326 .9326 .9326 .9326 .9326 .9326 .93		
ing Dat	Ŋ	S	'n	24.25		.9710 .9735	_t	5 V
: Buckl	se Foil	м	КЗ	42.00		4000. 190. 19	5 ±.003 ¹	1 ±.010 6 ±.015(
e 11-A	Mangane	м	КS	70.00		.7277 .7325 .7132	λ(m ⁻¹) 1.578	1.573 1.572
<u>Tabl</u>		N	н	72.75		.7106 .7150 .6986	λ(n))√(n-⊥))√(n-2)
	/1964	м	КŢ	98.00		.5574 .5625 .5507		
	Jan, 29(pm)	Direction	Thimble	<u>Radius cm</u>	Elevation cm	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		

- 48 -

997 cm	ы	к7	00.0	5546 5563 5423	ge , 11 , 0096
n _c = 154.	Z	N	C1-21	. 0139 . 7048 . 2629 . 2013	Avera 73.00 ±0 1.7962 ±0 6
ل م م	щ	К5	0°0/	.7218 .7251	nhimble KlE 72.95 1.7926 1.7926 26 ±0.009
) <u>Coolant</u> <u>25</u> 99.726 at	ы	К3	4 c. 00	. 8958 . 9025 . 8784	т ким 73.05 1.7998 1.808
tice (D ₂ 0 <u>Moderat</u> u urity : '	И	ц	C2.42	.9685 .9754 .9499	Z _o (cm) c(m-1) corr
Hex Lat	ы	Кl	T4.00	(.1595) (.3486) (.5163) (.5163) (.5163) (.5163) (.52642 .9545 .9344 .9344 .9344 .9344 .9354 (.7281) (.5208)	
- 28 cm Temp :	м	K1	T4•00	(.1578) (.51459) (.51459) (.5146) .6637 .9552 .9552 .9552 .9552 .9158 .9158 .9158 .9158 .9158 .9158 .9158 .9159 (.7248) (.5145)	
ng Data	s	Ŀ	c2.42	.9620 .9668 .9423	+
<u>Buckli</u> se Foils	м	КЗ	44,00	.8958 .9029 .8782	±.0057 + ±.0107 9 ±.015 ¹
e <u>12-A</u> : langane:	м	КŞ	00.01	.7239 .7282 .7086	λ(m ⁻¹) 1.579c 1.5944 1.591
<u>Table</u> N	S	н	C1.21	.7072 .7126 .6934	λ(n) λ(n-1) λ(n-2)
1)/1964	м	КŢ	00.06	5538	
Jan. 29 (am	Direction	Thimble	Elevation	2222222288888888888888	

-49-

	4.831 cm	ម	кү	112.00		. 4558 . 4790 . 4878		age ±0.21	±0.0095	
	hc = 16	N	N	83.14		6348 6704 6825		Aver 77.45	1.6993	0095
t)	t % D ₂ 0	ស	КS	80.00		. 7057	Thimble	K1E 77.34	1.6978	.7044 ±0.
O Coolan	<u>or</u> 99.729 a	ы	K3	48.00		.8281 .8711 .8942		ктм 77.56	1.7008	(⁻¹) 1.
tice (D ₂ (<u>Moderat</u> u urity :	N	Ч	27.71		9046 9531 9688		z (cm)	$\alpha(m^{-1})$	a _{corr} (m
Hex Lat	23.1 [°] C P	ы	Кl	16.00		(.1410) (.3197) .4816 .6215 .6215 .7688 .8460 .9835 .9932 .9952 .9932 .9952 .9932 .9952 .9932 .9952 .9932 .9952 .9952 .9932 .99552 .9952				
- 32 cm	Temp :	м	Kl	16.00		(1409) (.3190) .4820 .5299 .7506 .3539 .3539 .3550 .9350 .9897 .9897 .9897 .9897 .9897 .9897 .9897 .9812 .8912 .8912 .8912 .8912 .9570 .14652) .4652)				
<u>ing Data</u>	Ø	S	IJ	27.71		. 9680 9425 9680				
Buckl	e Foil	м	K3	48.00		.8354 .8801 .8971		±.0036	±.0193	±.0252
e 13-A :	langanes	М	Кŗ	80.CO		.7045	∧(m ⁻¹)	1.4375	1.4338	1.4293
Table	I I	ß	н	83.14		. 63 <i>6</i> 6 . 6819		(u)	(n-1)	(n-2)
	u)/ 1964	М	КŢ	112.00		.4583 .4910		~	~	~
	Jan. 20 (9	Direction	Thimble	Radius cm	Elevation cm	885588998888889 89999988888889				

-50-

	G	63	4	8	570 904 330	e .27 .0072
	54.821	щ	Ж	112.	<u> </u>	verag 29 ±0. L6 ±0.
	c = 16	И	N	83.14	. 6510 . 6884 . 7009	A 77.2 1.701 1.702
Ę	τ% D ₂ 0 h	ы	KG	80.00	.67co .7064 .7213	Thimble KlE 77.02 1.6944 1.7066 ±0
0 Coolan	<u>or</u> 99.729 a	ម	КЗ	48.00	.8522 .8960 .9163	K1W) 77.55) 1.7088 (m ⁻¹)
tice (D	<u>Moderat</u> urity :	N	Ч	27.71	.9283 .9781 .9978	Z _o (cm α(m-1 corr
ı Hex Lat	23.1 ⁰ C F	ы	Kl	16.00	(.1443) (.3267) .3267) .5393 .6393 .6393 .6393 .7657 .7657 .7657 .7657 .9513 1.0160 1.0229 1.0160 .9841 .9841 .9841 .9841 .9204 .9204 .9204 .9204 .9204 .9204 .9204 .9204 .9204 .9204 .9204 .9207 .920	
a - 32 cm	Temp :	М	IJ	16.00	(.1452) (.3272) .4935 .4935 .412 .7695 .8750 .9552 1.0032 1.0173 .9807 .9807 .9807 .9159 .8248 (.7148) (.5970) (.5970)	
ng Date		ß	Ŀ	27.71	.9254 .9759 .9942	
Buckli	se Foils	М	КЗ	48 . 00	.8578 .9013 .9182	2 ±.0019 9 ±.0070
e 14-A	Manganes	м	К5	8.8	.6726 .7082 .7260	л(m ⁻¹) 1.4362 1.4409
Tabl	2	ß	Н	83.14	. 7035	λ(n) λ(n-1)
	m)/1964	Μ	КТ	112.00	.5042 .5042	
	Jan. 20 (a	Direction	Thimble	<u>Radius cm</u>	Elevation 1569 1128 1128 1128 1128 1128 1128 1128 112	

.

	050 cm	ы	К7	5.00	4222 4279	е 30 0061
	185.0			12(7erag 3 ±0.
	ا ج	N	N	93.53	.6517 .6519 .6519	37.18 37.18 1.5396 0061
<u>t)</u>	t % D ₂ 0	ы	K5	00'06	.6665 .6747 .6747	rhimble KlE 86.88 1.5335 1.5335 .5452 ±0.
0 Coolan	<u>or</u> 99.731 a	ы	K3	54.00	.8855 .8855	r Klw 87.48 1.5456 1.5456 m ⁻¹) 1.
tice (D	<u>Moderat</u> 1rity :	N	ц	31.18	. 9549 . 9699 . 9643	Z ₀ (cm) α(m ⁻ .) α _{corr} (1
Hex Lat	23.1 ⁰ C h	ы	Кl	18.00	(.1269) (.2866) .4331 .5688 .6900 .6900 .9423 .9423 .9423 .9423 .9477 .9477 .9477 .9477 .9177 .9177 .9177 .9177 .9177 .15392) (.5392) .1753	
1 - 36 cm	Temp :	м	Кl	13.00	(.1282) (.2875) .4342 .5694 .5694 .5694 .9848 .9848 .9848 .9848 .9848 .9848 .9128 .9445 .91288 .9128 .9128 .9128 .9128 .9128 .9128 .9128 .9128	
ing Data	-	ω	ס	31,18	. 9567 . 9699 . 9671	
Buckli	se Foils	М	K3	54.00	. 8889 . 8889 . 8889	±.0C22 ±.0C46 ±.0C53
e 15-A :	Manganes	м	КŞ	<u> 00</u> .06	.6692 .6827 .6771	(m ⁻¹) 1.3352 1.3408 1.3339
Table	L	S	H	93.53	. 6562 . 6562	√(n) √(n-1) √(n-2)
	n)/1964	м	к7	126.00	. 4261 . 4331	
	Jan. 16 (a	Direction	Thimble	<u>Radius cm</u>	Elevation 170 150 150 110 100 110 88 80 80 80 80 100 100 100	

-52-

-

. .

- -

-

_

	35 .0 63 cm	ы	КŢ	<u>126.00</u>	- 53 - 7634 - 7624 - 7535 74.	age ±0.29 ±0.0076
-	hc = 18	N	N	93.53	.6452 .6553 .6521	Aver 87.21 1.5373 .0076
IF)	tt % D ₂ 0	ы	К5	00.00	.6655 .6771 .6741	Thimble KlE 86.92 1.5297 .5430 ±0.
0 Coolar	<u>cor</u> 99.731 ₃	ы	КЗ	54.00	.8720 .8842 .8799	KIW 87.50 1.5449 m-1) 1
tite (D	Moderat	N	ц	3.18	.9581 .9711 .9692	Z ₂ (cm) α(m ⁻¹) αcrr(
1 Hex Lat	23.4 ⁰ C B	ы	Kl	18.00	(.5373) .4227) .4227) .5835 .5835 .5837 .5835 .5837 .5835 .9330 .9330 .9330 .9330 .9330 .9336 .9333 .9163 .9163 .9163 .9163 .9163 .9163 .9256) .1272) .9272 .9273 .9276 .1272) .9272 .1272) .2272 .2272 .2272] .2272 .2272] .2772]	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Temp :	м	Kl	18.00	(.1277) .2866) .4341 .5699 .6910 .5699 .8766 .9441 .9946 .91200 .91200 .91200 .91200 .91200 .91200 .91200 .91200 .91200 .91200 .91200 .91200 .91200 .91200 .912000 .912000 .912000000000000000000000000000000000000	
ing Date	m	ß	Ŀ	31,18	.9585 .9725 .9632	
: Buckl	se Foil	М	КЗ	54.00	.8733 .8876 .8830	0 ±.0020 7 ±.0080 3 ±.0114
e 16-A	Mangane	М	К5	00.00	6774 6774 6774)(m ⁻¹) 1.339C 1.3407 1.3313
<u>Tab1</u>		ß	Н	93.53	.6456 .6565 .6516	\(n) \(n-1) \(n-2)
	n)/1964	М	КŢ	125.00	.4308 .4321 .4249	
•	Jan. 15 (p	Direction	Thimble	<u>Radius cm</u>	Elevation cm 170 170 140 130 110 80 80 80 80 80 80 70 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	

-53-

		Tabl	e 17-A	: Buckl	ing Data	<u>a</u> - 40 G	<u>n Hex Lat</u>	tice ()	O Coolar	<u>1</u> ()		
	•					Ĩ		Moderat	- :01 10 735 at	ر بر الج	h 19	, 660 cm
Dec. 18 (p	m)/1963		Copper	Foils		Tenp :	51.4 C P		19.(3) at	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
Direction	м	ß	м	М	ß	м	ы	N	ជ	យ	N	ы
Thimble	КŢ	н	KG	K3	ŋ	Kl	Kl	ц	K3	К5	N	КŢ
Radius cm	140.00 1	03.92	100.00	60.00	34.64	20.00	20.00	34.64	60.00	100.00	103.92	140.00
Elevation Cm 200 200 200 200 200 200 200 200	1.10855	1.8798 1.8798	1.9122 1.9476 1.9578	2.5686 2.6168	2.8672 2.9251 2.9169	(.3556) (.3556) (.7591) 1.1508 1.1508 1.5232 1.5232 2.6560 2.6560 2.9486 3.0170 2.5350 2.9486 2.9486 2.5350 2.994 2.7530 2.5350 2.5350 2.5350 (1.3832) (1.3832) (1.0492) (1.0492)	(2.8569 2.9193 2.9402	2.5758 2.6352 2.6514	1.9475 1.9479 1.9468	1.8231 1.8645 1.8725	1.0689 1.0966 1.1011
		(u) V	λ(m ⁻¹) 1.2718	100.1				z _o (cm)	K1W 102.62	Thinble KlE 102.34	Aver 102.48	age =0.15
)√(n-1))√(n-2)	1.2736 1.2744	5 ±.0050				α(m ⁻¹) α (π	1.3510 1-1) 1.	1.3504 .3574 ±0.	1.3507 0030	=0,0030
			- - -	- - - -				COLL				

-54-

		Tde	e 18-A	Buck1	ing Data	a 140 cm	Hex Lat	<u>tice (D</u> 2	0 Coolan	(L)		
18 (am	(1)/1963	Mai	nganese	Foils		Temp :	21.4 ⁰ C F	Moderat urity :	or 99.735 a	t % D ₂ 0	۳ م	215.722 cm
tion	м	S	Μ	Μ	ß	M	ы	N	ы	ы	N	ы
le	к7	H	К5	КЗ	Ŀ	Kl	Kl	Г	K3	КS	N	КŢ
s cm 1	40.00	103.92	100.00	60.00	34.64	20.00	20.00	34.54	60.00	100.00	103.92	140.00
tion	.3608 .3694 .3703	. 6231 . 6231	. 6356 . 6520 . 6531	.8552 .8784 .8339	04 <i>7</i> 9.	.1200) .2546) .5048 .5048 .6186 .7197 .9813 .9827 .9813 .9813 .9813 .9946 .9946 .9946 .9597 .9597 .9597 .9597 .9597 .9597 .95678 .3499)	(.1157) (.2506) (.3815) (.3815) (.3815) (.3815) (.3815) (.3815) (.3815) (.3815) (.3815) (.3815) (.3815) (.3815) (.3815) (.3815) (.4677) (.3590) (.3500) (.350) (.3500)	. 9490 . 9699 . 9738	.8572 .8795 .8797	.6315 .6465 .6478	.6041	
)(r)	λ(m ⁻¹) 1.2691	200	-			Z (cm)	MTX	Thimble KIE	e در	Average P 40 +0 25
		λ(n−1)	1.260	200.5	I QI			$\alpha(m^{-1})$	1.3518	1.34) <u>6</u> -	3484 ±0.0034
		λ(r-2)	1.2585	900:= 2	2			acorr (m	(-1) 1.	3550 ±0	,0034	

.

-55-

			ស	КŢ	00.0		33242 3348 3348		10	otrco.	
		0 	J		2					0 Fi	
		07 at %	N	N	51.96		.8522 .8649 .8703	A 17.01	84.65	1.4832	ofroc
_	rol	<u>derator</u> v : 99.70	ы	К5	50.00		. 8689 . 8837 . 8833	Thimble	84.56	1.4793	4918 ±0.(
Coolant	Cluster	C Purit	ы	КЗ	30,00		.9565 .9772 .9750	M L A	84.75	1,4870	(-1) 1.
tice (He	s plus -cocled)	p:24.2	й	ц	17.32				z, cm)	$\alpha(n^{-1})$	acorr ^{(m}
Hex Lat	Cluster UO ₂ (air	cm Tem	ы	Кl	10,00		(
1 - 20 cm	. U-metal -element	184.004	M	Kl	10.00		(1331) (2942) (4385) 6844 6844 9378 9378 9355 9355 9355 9355 9355 9355 9355 9355 9355 7092) (.7092) (.7093) (.7103)				
irg Data	-element of 36 7-	וו בי בי	ິ່	ŗ	17.32				10	+	10
: 3uckli	55 19.	Foils	м	КЗ	30 . 00		.9556 .9753 .9741		5 ±.0476	+ ±.113≀	9 ±.1445
e 19-A	river Re	nganese	м	K5	50.00		.8737 .3923 .3909	$\lambda(m^{-1})$	1.5476	1.468	1.4739
<u>rable</u>	a ¹ Dı	Mai	ß	Н	51.96		.8674 .8853 .8737)(u)	λ(n−1)	у(п-г)
		/1964	м	к7	70.00		.8153 .8294 .8291				
		Mar. 16(pm	Direction	Thimble	Radius cm	Elevation cm	827923599998888889				

-56-

55 19-eleme. Is Kgw Is K M 1 M 1 Is 1 Is 1	a 'Driver anganese Fo s JZW L JZW L JZW (- 36,46 26 -9456 .9 -9456 .9 -9710 .9	× 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	964 M ² E S S XIE JO XIE JO 0 10.00 17.32 55(.2976) 55(.14418) 5775 3 7751 3 7751 3 7751 56897 3 7751 5 1.0042 5860 5 1.0042 5680 5 1.0042 5680 5 1.0042 5680 5 1.0042 5580 5 1.0042 55800 5 1.0042 55800 5 1.0042 55800 5 1.0042 55800000000000000000000000000000000000	55 19-element U-metal Clusters plus <u>a 'Driver Region' of 36 7-element UO₂ (air-cooled) Clusters</u>	Moderator	anganese Foils $h_c = 184.250$ cm Temp : 24.2°C Purity : 59.708 a: % D_2O	S I W E N E N E N S E W S E W S E W S E W S E W S E W S E W S E W S E W S E W S E W S E W E K W E W E W E W E W E W E W E K W E K W E K W E K W E K W E K W E K W E K W E K W E K W E K W E K W E K W E K W E K W E K	λ(m ⁻¹) Thimble Thimble X1W Thimble λverage λ(n) 1.5382 ±.0.59 Z _o (cm) 85.06 84.61 84.84 ±0.23	λ(n-1) 1.4543 ±.0230 α(m ⁻¹) 1.4775 1.4715 1.4745 ±0.0037
---	--	---	--	--	-----------	---	---	--	---

Table 20-A : Buckling Data - 20 cm Hex Lattice (He Coolant)

. .

-

-57-

-58-

Table 22-A : Buckling Data - 22 cm Hex Lattice (He Coolant)

-

55 19-el≅ment U-metal Clusters plus <u>a 'Driver Region' of 36 7-element U</u>O₂ (<u>air-cooled) Clusters</u>

Mar. 9 (pm)	t961/(Mang	anese F	oils	-	р _с : 17;	2.202 C	e	Ц Ц	rp : 24		oderato: ity : 9	<u>т</u> 99.710 а	it % D ₂ 0
Direction	м	ы	N	ß	м	មា	N	ម	ы	м	ម	N	w	ធ	м
Thimble	NTX	Klb	50	J2W	кзи	КЗЕ	Mle	34E	IJE	к5w	К5Е	ON	нгм	LGE	кТw
<u>Radius cm</u>	11.00	11.00	19.05	29,1.	33.00	33.00	39.67	47.94	50.40	55.00	55.00	57.16	61.25	68.68	77.00
Elevation															
160	(.2756)	(.2715)													
150	(.4322)	(6554.)													
140	5730	0725.													
130	.6975	.7002													
120	.8037	.8061													
110	.8890	.8920													
100	.9517	.9562													
8	.9886	. 9957	.9795	.9429	.9183	.9161	.8900	.8307	.8148	.7887	.7923	.7610	7438	6887	7021
8	1.0000	1.0072	506.	.9525	. 9303	9289	.8976	8396	.8242	1001.	7998	1022	26122	1809	200F
70	.9884	4966.	.9791	.9416	.9175	.9181	.8863	.8291	.8142	.7912	.7881	7594	7436	1989	7015
8	.9502	.96c3			<u>.</u>								2		(+)
ß	.8898	57 EF													
9	.8060	.8231													
ጽ	(.7137)	(.7266)) Y	(1)						al dmi d¶			
2 5					-						МIX	ALX.		02 62 612	
3	(1620.)	(1)20.)			г (u) V	1.7984 <u>-</u>	±.0105		N	(EM)	79.90	79.15	. 79.	53 ±0.0	38
					[(I-u)V	1.7379 ±	±.0177		α(Γ	1-1)	1.5971	1.5812	2.1.58	3 <u>9</u> 2 ±0.0	080

-59-

1.6006 ±0.0080

 $\alpha_{corr}(m^{-1})$

λ(n-2) 1.7562 ±.0291

(He Coolant)
Lattice
Hex
Ð
22
1
Data
ng
Ţ
Bucl
••
23-A
e.
Tab

	Clus
isters plus	(air cooled)
U-metal Clu	element UO
19-element	1 of 36 7-€
5 2	r Region

							- 60 -			ω	
	% D ₂ 0	ស	КТ	77.00			.7894 .7986 .7901	rage	±0.37	700. O±	
	710 at	N	N	57.16			.7667 .7711 .74195	Ave	79.47	1.5960	.0078
	<u>erator</u> ty:99.	ម	KG	55.00			.7910 .7910 .7917	Thimble KlE	79.10	1.5882	.6044±0
<u>Clusters</u>	C Puri	ы	КЗ	33.00			. 9165 . 9258 . 9179	MLX	79.84	1.6038	m-1) 1
cooled)	: 24.2	N	Ц	19.05			. 9758 . 9891 . 9796		z (cm)	$\alpha(m^{-1})$	a _{corr} (
O (air	m Temp	щ	Kl	00.11			(1.702) 5709 5709 6977 8036 9536 9938 1.0063 9938 9938 9938 9938 9938 9938 9632 9632 9632 9632 9632 9632 9633 1.0063 1.0063 1.0063 9536 9536 9536 (1.7288) (1.5288)				
element U	171,824 0	N	KI	11,00			(.2709) .5709 .5709 .5709 .6940 .8888 .9543 .9543 .9511 .9923 .9511 .8895 .9923 .9511 .8895 .8871 (.7149) (.7149) (.7140) .8871 .9223 .9233 .93333 .9333 .9333 .9333 .9333 .9333 .9333 .9333333 .93333 .93333 .93333 .93333 .93333333 .93333 .93333 .93333333 .93333 .93333 .93333 .9333				
f 36 7-1	۳ جر	ິ່ິ	F.	19.05			.9706 0489 1699.			-	
ر- رز o 'noie	e Foils	м	с х	33.00			. 9180 . 9292 . 9163		0 ±.0145	3 ±.0395	9 ±.0195
iver Re	nganese	З	: 4	с Ч	20.00		.7902 .7904	λ(m ⁻¹)	1.809	1.723	1.796
a ¹ Dr	W	U	5 ;	н 57 16	07.10		.7725 .7827 .772 ⁻		(u)v	(1-u)v	λ(n-2)
	1964	3	=	N. 1	00.1		.7908. .7908.				
	Mar.9 (am		DIFECTION	Thinble	<u>Radius cm</u>	Elevation	6 8 9 9 9 9 9 9 8 8 9 9 9 9 9 9 9 9 9 9				

-60-

\sim
(He Coolart
x Lattice
cm He
5
Data -
Buckling Data -
: Buckling Data -
24-A : Buckling Data -

-

55 19-element U-metal Clusters plus ver Region' of 36 7-element UO, (air-cooled) Clus

23 (m)	₩90L/	a T M M	Driver R	Foils	of 367 r	-element	uo ₂ (ai	c-cooled) <u>Cluster</u>	cs oderator	+ - - - - - - - - - 	((
	1007 /	51.7		E C T T S				up : 24.0		· λή·	YUD at 7	, <mark>D</mark> _0
uo	Μ	ß	Μ	М	ა	М	£J	N	មា	ы	И	មា
	К7	н	К5	КЗ	ŗ	Kl	Kl	Г	КЗ	КS	И	К7
EU EU	34.00	62.35	60.00	36.00	20.79	12.00	12.00	20.79	36.00	60.00	62.35	84,00
no												
	6836 6905 6686	. 8043 . 8098 . 7854	.8180 .8213 .7960	. 9357 . 9399 . 9075	. 9754 . 9823 . 9538	(.2389) (.4409) .6158 .7595 .8750 .9514 .9963 .9682 .9682 .9682 .9682 (.7312) (.7312) (.7312)	(.2364) (.4421) .6167 .7526 .8760 .9777 .9748 .9748 .9748 (.8187) (.7373) (.7373)	.9820 .9928 .9626	. 9336 . 9393 . 9088	.8142 .8200 .7955	.7748 .7748	. 6897 . 6682
			λ(m ⁻¹)							Thimble		
	~	(n)	1.4945	±.0112				ຊີ (ເຫ)	63.58	K1E 63.30	Ave1 63.44	tag≥ ±0.14
	~	(n-1)	1.4831	±.018c				α(m ⁻¹)	1.9569	1.9471	1.9520	±0.0087
	~	(n-2)	1.4945	±.020C				a corr	[m-1) 1	9580 ±0	.0087	

cm Hex Lattice (He Coolant	<u>Moderator</u>	: 24.0°C Purity : 99.714 at $\% D_2 O$ h ₂ = 154.090 cm	E E N C E	e jae ize kën këe no h <i>en</i> lee k7w	<u>27 52.30 54.98 60.00 60.00 62.35 66.32 74.93 84.00</u>				74 .81 <i>27 .</i> 7966 .7640 .7589 .7383 .7071 .6347 .6870	82 .8221 .8031 .7698 .7554 .7180 .7151 .6402 .69 ⁴⁰ 88 .8040 .7882 .7545 .7483 .7304 .6997 .6273 .6766		Thimble Timble Average	$z_{o}(cm)$ 71.80 71.78 71.79 ±0.16	α(π ⁻¹) 1.7863 1.17732 1.7798 ±0.0072	\sim (m-1) 1 7802 ±0 0070
<u>ling Data - 24</u>		Temp	R B	W K3E MIE	00 36.00 43.2				14 .9100 ^{,877}	88 .9176 .888 99 .8995 .865			8 ±.0068	990c.± 4	0 + 010E
able 25-A : Buck		janese Foils	M E	J2W L2E K3	31.75 31.75 36.				.9297 .9326 .91	.9393 .9417 .91 .9221 .9223 .89		λ(n ⁻¹)	у(л) 1.718	β / 1 (1−τ)γ	27 L 10
ы		Mang	υ υ	E JO	00 20.78			477) 396) 228) 584 323	322 357 366 .9714	993 9789 333 9563	302	557	130		
		. 28 (pm)/1964	ection W F	mble Klw Kl	lius am 12.00 12.	vaticn	G	L ¹ Co (.1449)(.1 ¹ L ¹ Co (.3352)(.35 L ¹ Co (.5038)(.55 L ¹ Co (.5038)(.55 L ¹ Co (.5502 .65 L ¹ Co (.57 L ¹ Co (.5502 .65 L ¹ Co (.57)(.57)(.57)(.57)(.57)(.57)(.57)(.57)	90 . 9484 . 97 90 . 9484 . 97 90 . 9488 . 97 90 . 9888 . 90	70 1.0000 9 60 .9761 .9	50 .9223 .9	30 (.7483)(.7	o.)(2000.) 01 10 (.6100)(.6		

Hex Lattice (He Coolant) Ē đ ÷ 5 â ä

		 ш	к7	00	0 0 0 0 0 0 0 0 0	و 0090.
	5 9			81		erag 5 ito
	153.82	Z	N	62.35	. 7405	аv 71.1 1.778 1.778
^	= ب د	ធ	K5	60 .00	.7642 .7538	Thimble KlE 70.60 1.7710 .7858 ±0.
Coolant	or 6 at % D	ы	КЗ	36 . 0C	.9153 .9260 .9037	KIW 71.70 1.7869 1.7863 1.71
tice (He	<u>Modera</u> : 99.71	Z	ц	20.79	. 9804 . 9933 . 9759	$z_{o}^{2}(cm)$ $\alpha(m^{-1})$ $\alpha_{corr}^{1}(r)$
<u>i Hex Lat</u>	c Purity	ы	Кl	12,00	(.1395) (.3355) (.5050) .6518 .7785 .8812 .9495 .9455 .9455 .94555 .945555 .945555555555	
24 cm	• : 24.1 ⁰	М	КТ	12,00	(.1419) (.5536) (.5536) (.5536) .6520 .8796 .8796 .9530 .95200 .95200 .95200 .95200 .95200 .95200 .95200 .95200 .95200 .95200 .95000 .95200 .95200 .95200 .95200 .952000 .95200 .95200 .95200 .95200 .952000 .95200 .95200 .95200 .95200 .95200 .95200 .95200 .95200 .95200 .95200 .952000 .95200 .95200 .95200 .952000 .952000 .95200 .952000 .952000 .952000 .952000 .9520000 .952000000000000000000000000000000000000	
ing Data	Temp	S	ŋ	20.79	. 9754 . 9853 . 9643	<u> </u>
: Buckl	Foils	Μ	КЗ	36.00	.9122 .9212 .9016	L ±.013(5 ±.019) 2 ±.0261
e 26 -A	nganese	М	КS	60 . 00	.7653 .7743 .7557	λ(m ⁻¹) 1.7371 1.7386 1.7502
Tab.	Ma	S	н	62.35	.7487 .7581 .7443	λ(n) λ(n-1) λ(n-2)
	n)/1964	М	КŢ	84,00	.6906 .6981 .6833	
	Feb. 24 (p	Direction	Thimble	<u>Radius cm</u> Elevation cm	ୢୖୠୢ <u>ଽୄ</u> ୠୄୠୢୠୄୠଌୡୡୡୢୡୡୢ	

-63-

		.762 cm	ы	м к7е	5 91.00													6019. L	16 .6241	17 .61 ⁴⁴						<u>0</u>	290	600		
		= <u>1</u>	X	K6.5	85.2													.5 28 29	365.	.593					rage	+0	0 1) DH		
		ٿ ب	N	N 5W	79.07													.0259	.5378	.5304					Ave	69.22		c).+c	ŝ	
			ы	J5.5E	72.38												,	.6779	.6902	.6826				e	0	41	000	אַג	±0.05	
		% D 20	N	NO	57.55												(.7080	.7234	.7134				Thimbl	Ċ	69.	ō	1°0	1.8577	
ant)		717 at	м	к5w	55.00													.735	.748.	.7386				-	Klw	69.02	0740	.0400		
coola	<i></i> 1	.9€:	S	11.5E	59.57 (.7793	.7330	.7838						- - -		т ("	r ^{(m-1})	
ice (He	lerator	Purity	м	ch.5W E	2.57													.7911	.7876	.7782						z) (ci	ו` - כ	u o	a cori	
Latti	MO	1.2°C.	ß	.5W F	6.65 5												Ì	.7986	8150	9108.										
cm Hez		цр : 24	N	MIE B	6.88												,	8571	8728 .	. 8623						88	-	} #	re	58
- 25		Tem	ы	3.5E	16.88 I													8545	8735	. 8644						300.± 5	-	Э. Н	3 ±.C11	3 ±.019
d Data			ы	КЭЕ	100.6													8944	.9146 .	90,28				1	/ III /	1.6555	0.0	1.618	1.638	1.640
ucklin			И	тSW	34.40													. 9167	. 9364	3260					-	(r		1-1)	1-2)	1-3)
-A : B		oils	м	(2.5W	1. ho													.9208	.9386	.9235						י)ע			י)ע	י)ע
<u>Table 27</u>		nganese F	S	JO Y	22.52				11,000	1.00	2364)	(410A)	5803	7158		TGZOT	91.15	.9594	.9787	.9639	9178	.8389	(.7438)	(96490)	(5676)					
		Maı	ы	1.5E	22.52						~							.9624	.9820	.9682				-						
			N	K.5E	13.00 2													9902	0084	.9978										
		/1964	м	KIW	3.00					12.4.00	2346)	4224)	5867	7284		2447	9282	. 0679	0000	9869	9403	8614	7632)	6684)	5833)					
		l(am),	lon	- -	cm 1	ion			•	•	_	:	•		•	•	•	•	н.	•	•	•			-					
		Feb. 2]	Directi	Thimbl€	Radius	Elevati	ЕIJ	5	•		140	130	120			100	8	8	70	.8	50	\$	ĝ	8	ç	2				

-64-

eb. 19 (pm)/ irection himble adius cm 91 130 130 130 1100 100 100 100 100 100 1	ID7 1264 M S W S M S 107 726 107 726 153 726 153 726	able 26 Mang 55 65. 74 53 .74		Buckli W K3 8961 9151 9027	ng Data s s . 9593 . 9686	Temp : Temp : W K1 K1 K1 K1 (.2229) (.4129) .5809 .5809 .7222 .9854 1.0000 .9854 .9854 .9853 .9854 (.7659) (.5897) (.5897)	m Hex Lat 24.2°C F 24.2°C F x <	.tice (He Moderat N L L 22.52 .9847 .9734	er 00 99.717 a 99.717 a 89.73 .9157 .9157 .9057	L) t % D ₂ 0 E K5 K5 (55.00 .729 ^t .729 ^t .7366	h _c = 147 и и к с7255 с7255 с7262	.448 cm E F .6068 .6159 .6159
		у (т							МТМ	Thimble KlF	Avera	age
)(n)	Ч.	6554 :	±.0072				(mu) 2	68 80 80	67 66	68 23	-
			+000					(u) v v	02.20 02	67.66	68.23	±0.57
	∑-u-)∕	1) 1.	6513 :	±.0114				$\alpha(m^{-1})$	1.8605	1.84c6	1.8506	±0.0100
		- L / C	- 1009					•	·)))))))))
	<i>י−</i> וו/v	د) ۲.	1550	±.000				acorr (m	- ¹) 1.	8573 ±0.	0100	

-65-

.

		Table	29-A	: Buckl	ing Dat	a - 28 c	m Hex La	<u>ttice (H</u> Modera	le Coolan tor	[])		
Jan. 30 (p	m)/1964	æ	langane	se Foil	ß	Temp:	23.6°c	Purity :	99.725	at % 2 ₂ 0	$h_{\rm C} = 14$	6.504 cm
Direction	М	ß	М	М	ß	М	ы	N	ы	ы	И	ы
Thinble	К7	H	К5	КЗ	Ŀ	Кl	KI	ц	КЗ	K5	N	КТ
<u>Radius cm</u>	98.00	72.75.7	00.07	42.00	24.25	14.00	14 . 00	24.25	42.00	co.o7	72.75	98.00
Elevation cm												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.5560	. 6930 . 7109 . 7031	.7127 .7292 .7199	. 8822. 88933	. 9587 . 9587	(.1981) .5623 .5623 .5623 .9737 .97777 .9777 .97777 .97777 .97777 .97777 .97777 .97777 .97777 .977777 .97777 .97777 .97777 .97777777 .977777777	(.1979) .5628 .7091 .7091 .7091 .2528 .9193 .9193 .9413 .9413 .9413 .9413 .9413 .9413 .9413 .9413 .9671 (.7691) (.5677)	. 9564 . 9763 . 9646	.8306 .9014 .8907	.7144 .7258 .7185	. 6931 . 7081 . 6996	.5564 .5698 .5631
			∧(m ⁻¹)						KU	Thimble V KlE	ÂVe	srage
	~	(n)	1.578	33 ±.003	33			2 ⁰ (2	cm) 68.	52 68.17	58.35	5 ±0.18
	~	(n-1)	1.597	73 ±.012	54			α (m	-1) 1.89	16 1.8762	1.883	7700.0± (
	~	(1-5)	1.60	±5 ±.01	74			o v v	rr ^(m⁻¹)	1.8910	±0.0077	

-66-

	F	1								
	Moderator Purity : 99.725 at % D ₂ 0 h _c = 146.496	E	K7 60 %	98.00	. 5633 . 5633		rage	2.17	/ 1.8745 1.8751±0.0071	1.8861±0.0071
		и	N	72.75	. 6918 . 70£6 . 6 <i>9</i> 72		Thimble (KlE Ave	€ 68.12 68.29		
<u>.</u>		E	КS	70.00	.7162 .7313 .7220	Thimble VIT				
101 DOD 01		ы	K3	42.00	. 8930	KIV	a) 68.49	^L) 1.883 ⁷	(m ⁻¹)	
		И	ч	24.25	. 9538 . 9661			ت 20(1	α(m-1	a corr
	23.6 ⁰ c	ы	Кl	14,00	(.1972) .5657 .5657 .5657 .9183 .9183 .9183 .9183 .9183 .9854 .9854 .9854 .9854 .1705) (.5671)					
	Temp :	м	Kl	14.00	(.1984) .3921) .5635 .7082 .8308 .9229 .9764 .9229 .9857 .9857 .9857 .5598)					
	Manganese Foils	ა	Ŀ	24.25	. 9430					
		М	K3	42.00	. 8855 . 9036 . 8932		λ(m ⁻¹)	1.5696±.0037	1.5608±.0159	1.5650±.0209
		м	К5	70.00	.7152 .7294 .7214	λ(m ⁻¹)				
	(1)/1964	S	н	72.75	. 7044			(u)	λ(n-1)	λ(n-2)
		М	кү	93.00	5566 5715 5663			~		
	Jan. 30(am	Direction	Thimble	Radius cm	Elevation 146 126 126 23 45 26 26 26 26 26 26 26 26 26 26 26 26 26					

Table 30-A : Buckling Data - 28 cm Hex Lattice (He Coolart)

.

-67-
t) . ပိ 10, .

-68-

	E			1				
	154.405 c	ы	К	112.00		1611. 1761. 1997.	rage	±0.43 ±0.0072
	0 h _C = .	N	N	83.14		. 65 ⁴ 1 . 6817 . 6892	e Avei	71.97 1.7972 0.0072
(t)	at % D	ы	К5	80.00		.7104 .7104 .7104 .7104	Thimbl€ Kl3	0 71.55 1067.1 4 1.8026 1
e Coolar	tor : 99.729	ម	КЗ	48.00		. 8532 . 8921 . 9023	KIW	m) 72. ¹ 1) 1.80 ⁴ r ^{(m-1})
ttice (H	Modera Purity	N	ц	27.71		. 9305 . 9718 . 9807		zo(α α(μ ⁻ cor
m Hex La	= 23.2oC	ы	Kl	00.01		(.1433) (.5048) (.5048) (.5048) (.5048) .6533 .8813 .9546 .9546 .9878 .9878 .9878 .9878 .9349 .9346 .9361 .9367 .9367 .9367 .9367 .9367 .9367 .9367 .9367 .9367 .9367 .9367 .9367 .9367 .9375 .9367 .9367 .9367 .9367 .9367 .9367 .9367 .9367 .9367 .9367 .9376 .9367 .9376 .9367 .9367 .9367 .9376 .9367 .9376 .9376 .9367 .93766 .93766 .93766 .93766 .93766 .93766 .93766 .93766 .9376		
a - 32 c	Temp:	Μ	Kl	<u>16,00</u>		(.1464) (.3387) (.5099) (.5099) (.659- .9596 .9596 .9254 .9254 .9254 .9254 .9254 .9254 .9254 .9254 .9254 .9254 .9254 .9254 .9254 .9254 .9254 .9254 .9254 .9254 .9254 .9259 .9254 .9266 .9266 .9266 .9266 .9266 .9266 .9266 .92666 .92666 .92666 .92666 .92666 .92666 .92666 .92666 .92666 .92666 .92666 .92666 .92666 .92666 .92666 .92666 .926666 .92666 .92666 .92666 .92666 .926666 .926666 .92666 .92666 .926666 .926666 .926666 .926666 .926666 .9266666 .926666 .926666 .9266666 .926666 .9266666 .926666 .926666 .9266666 .926666 .926666 .926666 .9266666 .926666 .9266666 .926666 .926666 .92666666 .926666 .926666666 .926666 .92666666 .926666 .9266666666 .9266666666 .92666666666 .926666666666		
<u>ing Dat</u> :	ß	S	Ŀ	27.71		. 9268 . 9668		
Buckl	se Foil	м	КЗ	48.00		. 8630		* ±.0023 * ±.0092 * ±.0147
e 32-A:	Mangane	M	КS	80.00		.7135	رً m ⁻¹)	1.4367 1.4357 1.4344
<u>Tabl</u>		S	н	83.14		.6905 .6905		(n) (n-1) (n-2)
	m)/1964	М	к7	112.00		4786 4986 5017		κ κ κ
	Jan. 21 (p	Direction	Thimble	Radius cm	Elevation cm	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

.

-69-

					7 0				
	ទី				- 70 -		0	650	
	-71.233	ы	К7	126.00	4197 44360	erage	17 ±0.3(90.0± 99	
	ן ביי ביי	N	N	3.53	.6347 .6588 .6670	e Ave	80.	7 1.63(н о.оо99
_	it % D_0	ជ	К5	00.06	.6538 .6832 .6907	Thimble KlE	7 79.87	4 1.6267	1.6420
Coolant	ы 99.730 а	ы	КЗ	54.00	.8529 .8891 .8952	Klw	m) 80.4	. ₁) 1.646	r ^{(m-1})
cice (He	Moderato Purity:	N	ц	31.18	. 9356 . 9757 . 9857		z°(c	α("	a COL
Hex Lat	23.1 [°] C 1	ы	Кl	18.00					
- 36 cm	Temp: =	ž	Kl	18.00	. 5692 . 5646 . 5646 . 5646 . 6958 . 8993 . 9658 . 8993 . 9658 . 9658 . 9658 . 9658 . 9658 . 9658 . 9658 . 9658 . 9569 . 1539) . 5783) . 5783)				
ng Data		ß	ŗ	31.18	- 9347 - 9713 - 9713 - 9713 - 9949 -		9	7	0
Buckli	se Foils	м	K3	54.00	. 9002		7 ±.001	6 ±.005	3 ±.008
s 33-A:	langanes	M	К5	90.00	. 6582 . 6840 . 6931	λ(m ⁻¹)	1.330	1.333	1.330
<u>Tabl</u>	V	S	н	93.53	. 6515 . 6698)(п))(n-1)	ע(2-1))
)/1964	м	К7	126.00	1424. 1424.				
	Jan.17 (am	Direction	Thimble	Radius cm	Elevation cm 170 150 150 110 120 90 100 100 80 80 70 80 70 80 100 100 100 100 100 100 100 100 100				

-70-

	Ę	1				
	171.256	E	КŢ	126.00	4182 4392 4392 4392	ge ±0.41 ±0.0075
	۳ بر م	, z	N	93.53	.6331 .6643	Avera 80.02 1.6352 1.0075
<u>t</u>)	at % D ₂	, Ш	K5	00.00	. 6516 . 6788 . 6864	Thimblé KlE ? 79.61 1.6277 1.6409 ±0
e Coolan	tor 99.730	ы	КЗ	54.00	.8539 .8891 .8967	Klw) 80.42) 1.6427 (m ⁻¹) 1
ttice (H	Modera† Purity:	ы	Г	31.18	. 9309 . 9707 . 9817	2 ₀ (cm α(m-1 corr
m Hex La	= 23.1 ^o C	ш	Kl	18.00	(.0712) (.2502) (.4145) .5623 .6901 .8016 .8908 .99569 .9980 .9980 .9988 .9988 .8105 .1676)	
a - 36 c	Temp:	М	Кl	18.00	(0727) (.2515) (.4158) .5646 .6928 .8074 .8951 .9538 .8970 .9538 .8970 .9538 .8870 .9538 .8870 .9538 .8870 .9538 .8870 .9538 .8870	
ling Dat	Ls	ß	Ъ	31.18	. 9299	
Buck	se Foi]	М	КЗ	54.00	. 8551 . 8864 . 8991	±.0018 ±.0068 ±.0062
e 34-A:	Mangane	М	К5	<u>90.0</u> 0	.6560 .6888 .6888	(m ⁻¹) 1.3302 1.3291 1.3153
<u>Tabl</u>		S	Н	93.53	.5344 .5611 .5669	7 (n) (n-1) (n-2)
	m) 1964	м	К7	126.00	. ¹ 214 . 1380	* * *
	Jan. 16 (p	Direction	Thimble	Radius cm	Elevation cm 170 150 1140 1120 1120 1120 100 100 100 100 100 100	

.

-

•

	Tab	1e 35-A	: Buckl	ing Dat	a - 40 c	m Hex Lat	tice (H Moderat	e <u>Coolan</u> tor	(1)		
	9	Mangane	se Foil	ŝ	Temp :	21.5 ⁰ C F	urity :	99.735	at % D ₂ 0	h = 19	16.269 cm
	S	м	М	ίυ	М	ы	N	ы	ы	N	ы
~	Н	K5	K3	IJ	Кl	Кl	Ч	КЗ	К5	N	К7
8	103.92	100.00	60,00	34.64	20.00	20.00	34.64	60.00	100,00	103.92	140.00
500	.6283 .6283	.6522	.8518 .8783 .8841	. 9449 . 9703 . 9758	(.1433) (.2908) .4313 .5616 .5786 .5786 .7802 .9306 .9306 .9487 .9477 .9477 .9477 .9477 .9477 .9477 .9477 .9477 .9477 .9477 .9477 .9477 .9477 .9477 .9477 .9477 .94777 .94777 .94777 .94777 .947777 .947777777777	(.1391) (.2876) .4280 .6768 .6768 .6768 .9297 .9297 .9297 .9268 .9218 .9218 .9518 .9226 .7772 .9226 .9518 .9518 .9337) .5337)	.9429 .9713 .9733	. 8790 . 8789 . 8789	. 6194 . 6194 . 6194	. 6263	.3601 .3690 .3706
									Thimbl	e.	
	у(n)	λ(m ⁻¹) 1.266(0 ± 001	ß			Z ⁰ (G	КІW т. 63.1	5 92.6	th 92.9	erage 0 ±0.26
	(1−1))	1.271	5 ±.004;	S			a(m -	¹) 1.466	4 1.460	1.46 <u>3</u>	i6 ±0.0029
	√(n- 2)	1.266	2 ±.005	8			a cor	r ^{(m-1})	1.4715	±0.0029	

2 Ē Š -72-

	۲ E								42	
	96.303	ទេ	КŢ	140.00		. 3524	age	±0.22	200°0∓	
	р С =]	N	N	03.92		.5883 .6197 .6338	Avera	92.85	1.4510	-0.0024
	t % D ₂ 0	ы	К5	00.00		.6171 .6482 .6653	'himble KlE	92.63	1.4590	r.4688 ⊴
<u> Coolant</u>)	r 99.735 a	ы	КЗ	0.00 10		8339 9009	L WLM	93.07	1.4629	m ⁻¹)
	Moderato urity:	N	ч	34.64 6		9219 .9662 .		z) (cm)	α(m ⁻¹)	a _{corr} (
Hex Latt	21.5°C F	ы	KJ	20.00		.1428) 2953) 5715 5715 5715 5715 5715 9516 9588 9588 9588 9727 9727 9162 9162 9162 9162 9162 531) 5231)				
- 40 CH	Temp: =	м	Kl	20.00		.1473) (.2994) (.2994) (.4423 .5749 .5749 .9513 .7974 .9513 .0000 .0000 .0000 .00114 .0010				
ng D <u>ata</u>		S	ъ	34.64				2	0	m
Buckli	ie Foils	М	K3	00.00		.8307 .8738 .8982		£100.± 8	5 ±.0050	L ±.0058
. 36- A :	langanes	М	КS	00.00		.6213 .6514 .6677	א(m ⁻¹) א	1.2668	1.2586	1.267]
Table	X	S	н	03.92 1		.5925 .6217 .6379		у(n)	λ(n-1)	λ(n-2)
	u)/1963	м	кŢ	140,00		.3728				
	Dec. 19 (an	Direction	Thimble	Radius cm	Elevation cn	886983988888888888888888888888888888888				

.

.

-73-

APPENDIX B

Spatial Distributions of In Cd-ratios and Relative In/Cu Ratios

	Tab	le 1-B:	In Cac	dmium Re	atio -	ŭ C S S	attice	with D ₂) Coolai	nt		
<u>March 18, 1964</u>		Cri	tical H	eight :	193.6 (Ē		Mode	rator T	emperat	ure:2	1.2 ⁰ C
Thimble	к7w	Чон	к5w	КЗW	л _о	KIW	Kle	ۍ ۲	кЗг	K5E	No	К7Е
Radius (Cm)	70.00	51.96	50.00	30.00	17.32	10.00	10.00	17.32	30.00	50.00	51.96	70.00
Elevation (cm)												
180					-	(1.936)						
170							(2.007)					
160						*2.281						
150							1.995					
140						1.931						
130							2.029					
120						1.952						
110							2.027					
100			1.995		1.984	1.973			1.963		1.967 (2.078)
8	(2.058)	2.000		1.967			2.003	1.978		1.993		•
80			2.000		2.020	1.946			1.985		1.956 ((770.S
70							2.006					•
60						1.968						
50							2.000					
Ott						1.922						
30						Ŭ	(2.058)					
50					Ŭ	2.257)						
10						Ŭ	(3.092)					
	Radial	Avera	je = 1.9	82±.005	Axia	ıl Avera	1ge = 1	. <i>9</i> 79±.01	Q			
	7 7 7 7 7 7 7 7 7 7 7 7			Avera	ge = 1.	981 ±.0	90					
	יידרר		averay	1)								

	Table	e 2-E:	In Cad	mium Ra1	tio - 2 ¹	t cm Lat	ttice w	ith D ₂ 0	Coolan	μ		
March 2, 1964		Crit	ical He	ight :	<u>164.3 cr</u>	E		Modera	ator Te	mperatu	re : 24	1°C
Thimble	кТw	Но	KGW	КЗW	οŗ	KIW	Kle	ГО	KJE	КҔЕ	No	к7б
Radius (cm)	co. 48	62.35	60.00	36.00	20.78	12.00	12.00	æ.78	36.00	60.00	62.35	84.00
Elevation (cm)												
160						(2.332)						
150							(1,942)					
140						(2.531)						
130							2.474					
120						2.571						
110							*2.195					
100						2.492						
8							2.531					
හි		2.510	2.518			2.548		2.539	2.545			(3.275)
20	(3.252)			2.531	2.522		2.521			2.557	2.503	
3		2.487	2.483			2,533		2.525	2.555			(3.421)
50							2.520					
C I						2.568						
8							(2.600)					
ຊ						(216.2)						
CI							(3.718)					
	Radial	averaç	Je = 2.5	325±,006	Axia	1 Avera	ge = 2.	529±.01	г			
				Avera	ge = 2.	526±.00	Q					
	*Omitt	ed from	n averag	Ð								

-76-

	1211	, ,			Í			N				
<u>January 31, 19</u>	54	Crit	ical He	ight :	156.4 cr	E		Modera	tor T	<u>emperat</u>	ure:2	3.6°C
Thinble	к7w	Но	к5м	кзм	Ч	КІW	Kle	ГО	KJE	KJE	No	KTE
Radius (cm)	98.00	72.75	70.00	42.00	24.25	14.00	co.41	24.25	42.00	70.00	72.75	96.00
Elevation (cm)												
150							(2.862)					
140					-	(3.142)						
130							3.182					
120						3.230						
110							3.170					
100						3.217						
8							3.175					
8			3.218		3.121	3.245			3.165		3.182	(4.351
20	(4.268)	3.221		3.229			3.188	3.204		3.198		
60						3.206						
50							3.202					
01						3.201						
30							(3.308)					
20						(3.647)						
10							(4.873)					
	Radial	Averag	le = 3.1	97±.011	Ахі	al Aver	age = 3	.202=.00	98 0			
				Averag	e = 3.1	700.±79						

Table 3-B: In Cadmium Ratio - 28 cm Lattice with D_AO Coolant

•

•

·

	Tabl	e 4-B:	Relativ	e In/Cu	Ratio	- 40 cm	Lattice	e vith 1	D ₂ 0 Coo:	lant		
December 20,	1963	5	ritical	Height	: 215.8	cm	Mc	oderato	r Tempel	rature :	22.0 ⁰ C	
Thimble	к7w	но	K5W	КЗW	۰°	K.W	Kle	но	ХЗЕ	К5Е	z ^o	K7E
Radius (cm)	140.00	103.92	100.CO	60.00	34.64	20,00	20.00	34.64	60.00	100.00	103.92	140.00
Elevation (c	(u											
Ĩ	8					(59.48)	(59.07)					
a	8					59.31	58.12					
Π,	70					59.88	60.19					
Ţ	9					59.94	60.04					
Ā	50					60.42	55.78					
Ч	약					59.28	58.93					
г	30					59.71	59.62					
г	20					59.63	59.07					
1	10 (56.89	59.47	59.48	60.12	58.71	59.82	59.60	59.12	59.96	59.45	58.46	(56.44)
Ā	00 (56.83	59.62	60.73	60.23	60.28	59.85	59.68	60.07	59.78	59.82	60.07	(57.12)
	8	59.27	60.09	59.14	58.74	59.08	59.83	59.77	59.42	59.14	59.77	(57.35)
	8					59.16	59.51					
	70					59.01	60.51					
	60					59.97	60.41					
	50					60.08	59.59					
	여					59.44	58.82					
	30					(59.42)	(58.60)					
	20					(57.32)	(56.89)					
	10					(56.02)	(56.06)					
	Rad	ial aver	age = 59	9.62	Ax	tial Ave	rage =	59.61				
				Average	: = 59.6	1 ±.07						