Strategies and National Programs of Closed Fuel Cycles: Russian Expert Vision

M.V. Kormilitsyn* et al.

* - JSC "SSC RIAR", Dimitrovgrad, Russia

FR09 Int. Conference, Dec 7-10, 2009, Kyoto, Japan

Actual Agenda: New Technological Platform (NTP) of Nuclear Power

НИИАР

- NTP Innovation Nuclear System (INS –definition by INPRO Project), which will includes:
- Full-scale reprocessing of Thermal Reactors SNF
 with production of Pu bearing fuel for Fast Reactors
- Fast Reactor Fleet with its Closed Fuel Cycle (FR CFC)
- This FR CFC includes full Recycle of Long-Lived MA and FP

So called <u>Module of NTP</u> = TR SNF Reprocessing Plant + FR Fleet + FR CFC

GLOBAL STATUS OF SNF REPROCESSING

_НИИАР

COUNTRY	FACILITY	AMOUNT	OPERATION (Year)	CAPACITY (Fuel Type)	
			(Tear)	tHM	
France	Marcoule (UP1)	18, 000	1958 -1985	400 (GCR):decom	
	La Hague (UP2/3)	25,000	1967/1990~	1600 (LWR)	
Germany	WAK	180	1971 -1990	30 (LWR);decom	
Japan	Tokai-Mura	1, 000	1977 ~	90 (LWR)	
	Rokkasho-Mura	-	2006 ~	800 (LWR)	
Russia	Chelyabinsk	3, 500	1971 ~	400 (VVER-440) real 100	
	Krasnoyarsk	-	2020 ~	1500 (VVER-1000)	
UK	B205	42, 000	1967~	1500 (GCR)	
	THORP	4,390	1994 ~	900 (LWR)	
USA	NFS West Valley	194	1966 -1972	194(LWR):decom	
EURATOM	Mol	105	1966 -1975	105 (GCR+LWR):decom	
India	Trombay/Tarapur/Kal pakam	?	1977~	~200 (LWR/PHWR)	

Possible Reprocessing Plants

_НИИАР

Country	Reprocessing Plant (capacity, t/Year)	Start	Types of SNF	Possible Market/ NB
RUSSIA	RT-2/3 (up to 2000 t)	2025- 2030	UO2 : VVER-1000, RBMK-1000 PWR	1000 t/Year – Russia 1000 t/Year - World
France	Gen-IV Plant (up to 2000 τ)	2040- 2050	UO2 , MOX: Any types of LWR and FR	1000 t/Year – France 1000 t/Year – World
China	Gen-III Plant (up to 2000 τ)	2020- 2025	UO2 , MOX: Only LWR	Only China
India	Gen-III Plant (up to 2000 τ)	2020	UO2 : LWR и HWR MOX FR	Only India
Japan	Gen-IV Plant (up to 1000 τ)	2050+	UO2 , MOX: Any types of LWR and FR	Only Japan
US	Gen-III Plant (up to 2000 τ)	2040+	UO2 : LWR	Only US

Advanced Fuel Cycle

					No. of Contract of		НИИАР
	Korea	USA	Japan	France	Russia	China	India
Policy	Wait and See	Direct → Reproces- sing	Reproces- sing	Reproces- sing	Reproces- sing	Reproces- sing	Reproces- sing
Introduc- tion Of AFC	-	~ 2050	~ 2025	2020 ~ 2040	~2025	~2025	~2020
Reprocessing or Recycling Technolog	Pyro	UREX+, Pyro	NEXT, Pyro	COEX /GANEX	Advanced Aqueous, Pyro, Vibro	Purex, Pyro	Purex, Pyro
Fast Reactor	SFR (Metal)	SFR (Metal, Oxide)	SFR (Oxide, Metal)	SFR (Oxide) GFR (Carbide, Nitride)	SFR /LFR (Oxide, Nitride)	SFR (Mixed oxide)	SFR (Mixed carbide, Oxide, Metal)

Examples of Transition Scenarios (1)

1)

Evolutionary Transition Scenario Long-term horizon (2050)

- Existing Large Reprocessing Plant for LWR SNF based on water technology
- Adaptation the water reprocessing technology to FR SNF
- 3. Large centralized Reprocessing Plant for FR SNF based on water technology
- 4. Long-term horizon (after 2040-2050) development of AINFCT (Pyro) for CNFC

Countries – Japan (China?) – "French Influence Scenario"

Examples of Transition Scenarios (2-1)

НИИАЕ

Combined Transition Scenario -1 Middle-term horizon (2025-2030)

- 1. New Large Reprocessing Plant for LWR SNF based on water technology (2020-2025)
- 2. Accelerated development the Pyro AINFCT for FR SNF reprocessing
- 3. Reprocessing Plant for FR SNF (2025)

Countries - (India?, Russia, US?)

Examples of Transition Scenarios (2-2)

Combined Transition Scenario - 2

Long-term horizon (2040)

- Existing Large Reprocessing Plant for LWR SNF based on water technology - till 2040
- 2. Development the AINFCT for FR SNF reprocessing
- 3. Large Reprocessing Plant for Gen-IV Reactors SNF 2040

Countries – France (Itself French Scenario)

Examples of Transition Scenarios (3)

_HUUAF

<u>Accelerated Innovative Transition Scenario</u> Middle-term horizon (2025)

- New Large Reprocessing Plant for LWR SNF based AINFCT (Fluoride volatility + Pyro) – 2025
- 2. Accelerated development the Pyro AINFCT for FR SNF reprocessing
- 3. On-Site Reprocessing Plants for FR SNF 2025

Countries – Russia?, India?

ницар

Russian National Program

Stages of Russian nuclear energy innovative development

НИИАР

The Initial stage till 2020:

Creation of experienced-industrial infrastructure of CNFC and technologies development, providing its evolution.

Transitional stage 2020-2030:

Development of CNFC technology on industrial scale.

Main stage after 2030:

NE development based on a new technological platform.

Large-scale NE as a basis of the energy provision for national and world development is possible when based on the following key technological and system decisions:

- NE system based on CFC with FR and TR;
- NE system with high temperature reactors;
- Optimum recycle for MA and LLFP;
- International Fuel Cycle Services Centres

FTP "Nuclear energy technologies of the new generation" in 2010-2020

_НИИАЕ

Concept of the program is:

consolidation of efforts and resources to create the basis of new technological platform in 2020-2030 and till 2050, including:

- 1. key technologies of new generation:
- high safety reactor technologies (SFR, PFR, PBFR);
- the new types of fuel;
- dry reprocessing of spent fuel;
- final disposition of radioactive waste.
- 2. the experimental research base, providing achievement of these tasks, as well as groundworks for new technologies.

Russian Federal Tasks-oriented Program

НИИАР

"New Generation Nuclear Power Technologies" (2010-2020)

- New Reactor Systems:
 - Commercial SFR
 - Unique Test SFR MFTR (MBIR)
 - Pb FR BREST-300
 - Pb-Bi FR SVBR-100
- Advanced NFCT
 - Pyro-reprocessing (Molten Salt + Fluoride Vol.)
 - High-density Fuels for FR
 - HLW management
- Advanced experimental base
- Others

Characteristics of new Russian fast test reactor – Multi-functional Fast Test Reactor (MFTR/MBIR)

НИИАР

FTP "New Generation Nuclear Power Technologies

Characteristic	Value
Maximum flux Фтах, n/cm²·s	~ 6.0·10 ¹⁵
Thermal power, MWth	~ 150
Electric power, MWe	~ 40
Number of independent experimental loops (~1 MWth each, sodium, heavy metal and gas coolant + water coolants)	3 (+1 behind reactor vessel)
Fuel	Reprocessed Vi-pack MOX, (PuN+UN)
Core height, mm	400-500
Maximum heat rate, kW/I	1100
Number of vertical experimental channels 100-200 mm in diameter	up to 7
Maximum fluence in one year, n/cm2	~ 1,2·10E23 (~55 dpa)
Design lifetime	50 year
RR creation time	2009 – 2018

Federal Tasks Program "New Generation Nuclear Power Technologies"

НИИАР

RIAR planned participation in the field of AFC

- Large Multi-purpose Pyro Complex (MPC) 2017
 - Molten salt Reprocessing Facility
 - capacity up to 2 500 kg of FR SNF per Year (fuel type: oxide, nitride, metallic, IMF)
 - Fluoride volatility Reprocessing Facility,
 - √ capacity up to 1000 kg of SNF per Year (mainly LWR SNF)
- New Lab for Experimental and Innovative Fuel Production 2010-1014 (incl. Fuel and Targets with MA)
- New facility for HLW treatment
- Demonstration of Closing Fuel Cycle based on Pyrochemical technologies -2017-2020-... on a levels:
 - Up to 120-130 spent FAs of BN-600/800
 - Full scale CFC for MBIR from initial fuel loading
 - Other experimental implementations

- Development of Pyro reprocessing technologies on a semiindustrial level:
 - FR SNF molten salt technologies
 - MOX
 - Mixed Nitrides
 - Metallic
 - LWR SNF combination of fluoride volatility and molten salt technologies
 - UOX
 - MOX
 - Others
 - So called hard-to-reprocessing SNF (test and transportation reactors)
 - Innovation types of fuel (IMF, MSR +++)
- Demonstration of Closing of BN-800 Fuel Cycle on a semiindustrial level
 - up to 30 % annual loading, i.e. up to 3,5 4 t of MOX SNF per Year
- Testing and Demonstration of Closing FR Fuel Cycle for MA
- Develop the Initial Data for full scale Design of Industrial Pyro Module for FR SNF Reprocessing

MPC location at RIAR site SM-3 Reactor Entry **Multy-purpose** Pyro Complex Existing Radiochemical Complex, Bld.#120 Exit

3D View on MPC

NTP modules in a world

- 1. Russia (2025+): BN-800 + RIAR Pyro Module (2017) + Repr. Plant RT-2/3 (2025+)
- 2. China CDFR (2018+)
- 3. India 6 Units of PFBR/CFBR + Water reprocessing
- 4. France ASTRID (2020+) + La-Hauge reprocessing Plant
- 5. Rep. of Korea KALIMER (2025+)
- 6. US Probably INL site (2050+): AFCI
- 7. Japan Pilot JSFR (2025+)

Reactor base of national NTP

Country	Reactor	Fuel	Coolant	Capacity (MWe) /+NB	Repro- cessing	Start
Russia	BN-800	MOX (nitrid)	Na	880 MWe / Pu weapon grade	Pyro	2014
	BREST	Nitride	Pb	1200 MWe	Pyro	2020+
China	2 units CDFR	MOX	Na	800/900 MWe	?	2018+
India	6 units PFBR/ CFBR	MOX	Na	500 MWe	Water	2011-2023
	Series FBR	Met. U+Pu	Na	500 MWe / BR=1,6	Pyro	20223+
France	ASTRID	MOX	Na	350-500 MBT / MA fuel	Water	2020+
Korea	KALIMER	Met. U+Pu+Zr	Na	300-500	Pyro	2025-2030
Япония	JSFR	MOX	Na	?	Water	2025+
US						

Schedule of NTP development

- France
 - 2006-2008 start of NTP
 - Conceptual Design of ASTRID Reactor
 - Design of new fuel facility for ASTRID (MOX and fuel with MA)
 - **2012 -2014**
 - Start of ASTRID construction
 - **2020**
 - ASTRID putting into operation
- India
 - **2011**
 - Putting into operation of PFBR -500 with pellets MOX fuel
 - **2013 2023**
 - ◆ Putting into operation of 5 units of CFBR (totally 3,0 GWe of SER!)
 - **2015 2025**
 - Industrial FR CFC (water reprocessing of FR MOX fuel)
 - **2023+**
 - New generation of SFR with metallic fuel and pyro reprocessing
- Rep. of Korea
 - **2025 -2030**
 - Pilot SFR with metallic fuel and pyro reprocessing
- China
 - **2020**
 - CDFR-800/900
- Japan
 - **2025**
 - Pilot JSFR

New International Policy of Russian State Corporation "Rosatom"

- Russian Federal Tasks-oriented Program (FTP) "New Generation Nuclear Power Technologies" (2010-2020) now is open for international cooperation
- Not only for R&D collaboration
- But also for large-scale commercial type cooperation based on main Projects of Russian FTP
- For example:
 - International fast reactor MBIR
 - International R&D Center based on RIAR Pyro Reprocessing Complex
 - International commercial fast reactor Project
 - Possible International Consortium for mutual development and future selling of Commercial FR and CFC service on a World Market
- Nowadays we are ready to initiate the widely international discussions
- We are open for any ideas!