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ABSTRACT 
 
Point kinetics equations (P. K. E) are system of differential equations, which is solved simultaneously to get the 
neutron density as a function of time for a given reactivity input.   P. K. E are stiff differential equations, 
computational solution through the conventional explicit method will give a stable consistent result only for 
smaller time steps. Analytical solutions are available either with step or ramp reactivity insertion without 
considering the source power contribution. When a reactor operates at low power, the neutron source gives a 
considerable contribution to the net reactor power. Similarly, when the reactor is brought to delayed critical with 
the presence of external source, the sub critical reactor kinetics studies with source power are important to 
understand the power behavior as a function of reactivity insertion rate with respect to the initial reactivity.  
 
In the present work, P.K.E with one group delayed neutron are solved analytically to determine the reactor 
power as a function of reactivity insertion rate in the presence of neutron source. The analytical solution is a 
combination of converging two infinite series. Truncated infinite series is the analytical solution of P.K E.  A 
general formulation is made by Combining both the ramp reactivity and step reactivity solution. So that the 
analytical solution could be useful in analyzing either step and ramp reactivity insertion exclusively or the 
combination of both. This general formulation could be useful in analyzing many reactor operations, like the air 
bubble passing through the core, stuck rod conditions, uncontrolled withdrawal of controlled rod, discontinuous 
lifting of control rod, lowering of rod and etc. 
 
Results of analytical solutions are compared against the results of numerical solution which is developed based 
on Cohen’s method. The comparisons are found to be good for all kind of positive and negative ramp reactivity 
insertions, with or without the combination of step reactivity. The methodology is found to be a promising tool 
for analyzing low power reactor with the inclusion of external source. 
 
 

1. INTRODUCTION 
 
When a nuclear reactor operates at low power, the neutron source gives a considerable 
contribution to the net reactor power. Similarly, when the reactor is brought to delayed 
critical with the presence of external source, the sub critical reactor kinetics studies with 
source power are important to understand the power behavior as a function of reactivity 
insertion rate with respect to the initial reactivity. Ziya Akcasu et al, [Ziya Akcasu et al, 
1971] have solved the point kinetics equations analytically for any ramp reactivity insertion 
in to a critical reactor without considering the source power contribution. Prompt jump 
approximation was used in deriving the analytical expression. One group delayed neutron 
precursor is considered for the analysis. Fan Zhang et al [Fan Zhang et al , 2008] also used 
the one group model in deriving the analytical solution of point kinetics equation with source 
power. But the solution is more useful when the reactivity is linearly introduced 
discontinuously. Basically here, the ramp reactivity insertion is analysed with a solution 
which is a simple rearrangement of the one group P.K.E with prompt jump approximation. At 
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the end of the ramp the net reactivity is assumed as a step reactivity input. Analytical 
solutions are derived based on the first order Bernoulli’s differential equation for constant 
reactivity input (step reactivity input). 
 
In the present work P.K.E with one group delayed neutron are solved analytically to 
determine the neutron density as a function of reactivity insertion rate with respect to the 
initial reactivity in the presence of neutron source. Prompt jump approximation is used in 
deriving the analytical solution. The analytical solution is a combination of converging two 
infinite series. Truncated infinite series is the analytical solution of P.K.E. A general 
formulation is made by Combining both the ramp reactivity and step reactivity solution. So 
that the analytical solution could be useful in analyzing either step and ramp reactivity 
insertion exclusively or the combination of both.  
 
The general formulation could be useful in many reactor operating conditions, like the air 
bubble passing through the core, stuck rod conditions (step reactivity inputs), uncontrolled 
withdrawal of controlled rod (linear reactivity input), discontinuous lifting of control rod 
(combination of both step and positive ramp reactivity input), lowering of rod (combination 
of both step and negative ramp reactivity input). Since the formulation is made based on 
prompt jump approximation, the solution is not valid when the net reactivity is greater then 
one dollar. So, basically the methodology is a promising tool to analyse low power critical 
reactor with an external source.  
 
 Reactor kinetics analyses are carried out with the analytical solution, the results are found to 
be matching well with the numerical solution [B.Sharada and Om PalSingh, 1990], which is 
developed based on Cohen’s method [Richard Cohen, 1958.]. The comparisons are found to 
be good for all kind of positive and negative ramp reactivity insertions, with or without the 
combination of step reactivity.   
 

2. THE POINT KINETIC EQUATIONS AND ITS ANALYTICAL SOLUTION. 

General point kinetics equations with the source power for one group delayed neutron 
precursor concentrations are, 

PSλC(t)P(t)
Λ

βρ(t)
++

−
=

dt
dP  

(1)

 

λC(t)P(t)
Λ
β

dt
dC(t)

−=  
(2)

 
Where P(t) is the reactor power, C(t), is the delayed neutron precursor concentration. ρ (t) is 
the net reactivity as a function of time and Sp is the source term in Watts/s. β are delayed 
neutron fraction. λ  is the delayed neutron decay constant. Λ is prompt neutron generation 
time.  There are two differential equations and two unknowns. The source term Sp(Watt/s) is 
related to neutron source strength S (neutrons/s) by the following equation, 

 

Λ
=
ν
µSS p  (3)

Where, µ-energy released per fission 
 ν -Number of neutrons emitted per fission 
 Λ-Prompt neutron generation time 
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Suppose if the equilibrium sub critical power is a known parameter, the source power can 
derived by rearranging the point kinetics equations for equilibrium condition. 

Λ
1)P-(k

P
Λ
ρ(0)S 0

0P k
==  

(4)

Where P0 is the equilibrium sub critical power corresponding to the sub critical reactivity ρ(0) 
or the multiplication factor “k.”. If a sub critical reactor is brought to delayed critical, initial 
power  P(0) is calculated from the following equation. 

ρ(0)β
SβP

P(0) 0
−

Λ+
=  

(5)

The point kinetic equation (1) with prompt jump approximations is, 

0SC(t)P(t)
Λ

βρ(t)
P =++

− λ  
(6)

Differentiating the equation (6) with respect to t, substituting equation (2) gives, 
 

0
dt

dSλSΛλρ
dt

t)(dρP(t)
dt

dP(t)ρ(t)]-[β P
P =⎥⎦

⎤
⎢⎣
⎡ ++⎥⎦

⎤
⎢⎣
⎡ +=  

(7)

The rate of change of source power is small in many of the practical application. The above 
equation can be simplified by neglecting the corresponding term, 

0ΛλSλρ(t)
dt

(t)dP(t)
dt

dP(t)ρ(t)]-[β P =+⎥⎦
⎤

⎢⎣
⎡ +=
ρ  

(8)

The above equation is a general equation for any kind of reactivity insertion, with a condition 
that the maximum reactivity is less than one dollar and the minimum reactivity of any sub 
critical level. 
 
2.1 Step Reactivity Input 
 
For a step reactivity input the equation (8) will be reduced in to the following form, 

]ρ-[β
ΛλS

P(t)
]ρ-[β

λρ
dt

dP(t)

0

P

0

0 =−  
 
(9)

Solution of equation (9) is, 

1

t
]0ρ-[β

0λρ
-

P]ρ-[β

λρ

Ce
ρ
ΛS

t-
P(t)e

0

0

0

+−=  

 
(10)

Where C1 is the integrating constant, can be determined from the steady state condition. i.e at 
time t=0, the power P(t) is assumed to be the initial power P(0). So, from equation (10) the 
value of C1 is, 

0

P
1 ρ

ΛS)0(C += P  
(11)

Substituting the value of C1 in to equation (10), the analytical solution of point-kinetics 
equation with the presence of external source for only the step reactivity input is, 
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Equation (12) is valid for any sub critical level to a maximum reactivity of less than one 
dollar. This equation also could be derived from the generalised equation presented by Fan 
Zhang et al. 
 
2.2 Ramp Reactivity Insertion. 

 Bringing the reactor from the sub critical level to delayed critical and then to super 
critical could be done by either continuous or discontinuous linear reactivity insertion of 
order of few pcm/s based on the sensitivity of the detectors and sensors. The solution of 
P.K.E with ramp reactivity is required to analyze the given reactor condition. The analytical 
solution is formulated for the reactivity insertion tγ'ρρ 0 += , where ρ, ρ0 and γ’t are in 
dollars. The general equation (8) with the ramp reactivity input is, 
 

[ ]
( ) ( )]tγ'ρ-β[1

ΛλS
P(t)

]tγ'ρ-[1
λt1γ'

dt
dP(t)

0

P

0 +
=

+
+

−  
(13)

Solution of equation (13)  is, 
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Solution of the R.H.S integral of equation (14) is obtained through integration by parts. 
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 Where C3 is the integrating constant, determined from the steady state condition. 
Substituting the equation (14) from equation (15), 
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C 3 is the integrating constant which can be determined from the steady state condition, i.e at 
time t=0 the initial power is P(0). 
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equation (17) is the analytical solution for point kinetics equation, which can be used for a 
reactor from any sub critical level to delayed critical condition. Equation (17) is a 
combination of two infinite series and the validity of the equation is based on convergence. 
But the solution should work for all the reactivity in the given range -∞<ρ0 +γ’t ≤ 1.  
 

0 5 10 15 20 25 30
0

5000

10000

15000

20000

25000

Power (W)

Fig. 1: Comparison of Numerical and analytical solution for 10 pcm/s 
           Ramp Reactivity Input 

Time (s)

Po
w

er
 (W

)

 

0

50

100

150

200

250

300

Reac
tiv

ity
 (p

cm
)

Ramp Reactivity Input=-10 pcm/s
Step Reactivity Input=000.0 pcm

 Numerical Solution
 Analytical Solution
 Input Reactivity 

Reactivity (pcm
)

 



INAC 2009, Rio de Janeiro, RJ, Brazil. 
 

 
3.   RESULTS. 

3.1      Comparisons of Analytical Solutions with Numerical Results 

 With the validity check results of the analytical solutions are compared against the numerical 
code POKIN which is developed based on Cohen’s method for accuracy. Few cases are taken 
up for the analysis. Ramp reactivity insertion of 10 pcm/s to a  critical reactor is taken for the 
analysis. The analytical solution is found to be matching well with the numerical results as 
shown in the Fig.1.  
 
The comparison is found to be good for 10 pcm/s ramp reactivity insertion with -100 pcm 
step reactivity input also. The results are found to be matching well as shown in the Fig.2. So, 
from Fig.1 and Fig.2, it is concluded that accuracy of analytical solutions is good for any 
positive ramp reactivity insertions with or without definite step reactivity input. The analyses 
are carried out and compared for negative ramp reactivity insertion also. Test case of -1500 
pcm step reactivity input and -10 pcm/s ramp reactivity are also analysed. The comparison is 
found to be good as shown in Fig.3.  
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Fig. 3: Comparison of Numerical and analytical solution for -10 pcm/s 
           Ramp Reactivity Input and -1500 pcm/s step reactivity input
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3.2 Discussion and Future Development 

P.K.E with one group delayed neutron are solved analytically to determine the neutron 
density as a function of reactivity insertion rate with respect to the initial reactivity in the 
presence of neutron source. Prompt jump approximation is used in deriving the analytical 
solution. The analytical solution is a combination of converging two infinite series. Truncated 
infinite series is the analytical solution of P.K.E.  Though equation (17) is general solution for 
any ramp and step reactivity input, with any number (more number) of terms in the infinite 
series, the solution should converges to consistent result, with a minimum truncated error. In 
the present solution, beyond certain number of terms the infinite series doesn’t converge to 
consistent result. If the nth term value R is the product of P and Q, the value of  R,P,Q are the 
following, 
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The condition for convergence is that the value of R should decrease with n and finally go to 
zero. In case of positive net reactivity 0< ( )tγ'ρ0 + <1 at a given time “t”, the value of  

( ) n−+ ]tγ'ρ-[1 0  is a diverging function with respect to n. In that case if the function P 
decreases with “n”, such that the product of functions P and Q decreases with n, then the 
series is a converging series. Similarly, for negative ramps, function P is a diverging function, 
In that case if the function Q decreases with “n”, such that the product of the functions P and 
Q will decrease with n, then the series is a converging series. For example, for a given 
positive reactivity insertion with a negative step reactivity input, behavior of the functions P, 
Q and R are shown in Fig.4. If the value of ‘R’ decreases with ‘n’, then the solution is 
expected to converge to the correct solution,  but once if n  goes beyond certain n, the 
function R starts diverging and the series may not converged to the expected results. 
Similarly for negative ramp reactivity insertion with negative step, the behaviour of the 
fuctions P,Q and R  are shown in Fig.5. Convergence of the series and the correct number of 
terms considered for the analysis are decided based on the numerical value of step and ramp 
reactivity insertion. 
 
For any positive ramp reactivity insertion the function P decreases up to ‘n’number of terms, 
after that it starts diverging with ‘n’. So, with Q, convergence of the series is expected in the 
region before P reaches n. so the number of terms chosen in the series should satisfy the 

criteria
'

2
.

γ
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<n .  For any positive ramp insertion, at n if the value of R is less than 0.1, then 

the series is a convergent series and the number of terms considered in the series can  ‘n’. But 
for, negative ramp reactivity insertions, the function P is a diverging function. So if the series 
is converging series with Q, then the value of R as a function of n(number of terms) should 

satisfy the ratio test. If R1, R2, R3…are the terms of the function R, if 11 <= +

n
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RTEST , then 

the series is a convergent series. From the equation (18), based on the value of R,   

 
 

 
The value of n can be determined from Equation 19, and for that n if the value of R is less 
than 0.1, than the number of terms considered can be up to n, and the series is expected to 
converge to the correct solution. 
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4 CONCLUSIONS 

P.K.E with one group delayed neutron are solved analytically to determine the neutron 
density as a function of reactivity insertion rate with respect to the initial reactivity  in the 
presence of neutron source. Prompt jump approximation is used in deriving the analytical 
solution. The analytical solution is a combination of converging two infinite series. Truncated 
infinite series is the analytical solution of P.K.E. A general formulation is made by 
Combining both the ramp reactivity and step reactivity solution. So that the analytical 
solution could be useful in analyzing either step and ramp reactivity insertion exclusively or 
the combination of both.  
 
The general formulation could be useful in analysing  many reactor operating conditions, like 
the air bubble passing through the core, stuck rod conditions, uncontrolled withdrawal of 
controlled rod, discontinuous lifting of control rod, lowering of rod and etc. Since the 
formulation is made based on prompt jump approximation, the solution is not valid when the 
net reactivity is greater then one dollar.  Results of analytical solutions are compared against 
the results of numerical solution which is developed based on Cohen’s method. The 
comparisons are found to be good for all kind of positive and negative ramp reactivity 
insertions, with or without the combination of step reactivity.   
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