Lifetime Measurements in ⁷⁵Br

E. Merchan, R. Cardona, F. Cristancho¹ and S. Tabor, J. Pavan, M. Cooper, W. Cluff²

¹ Universidad Nacional de Colombia

² Florida State University

The experimental systematics of the relationship between side-feeding time τ_{SF} , and state lifetime τ , in highly excited states of deformed $A\approx 80$ nuclei shows that in general $\tau\approx\tau_{SF}$ [1,2]. Values of side-feeding times obtained from a Monte Carlo simulation agree with this experimental rule. ⁷⁵Br, however, does not seem to follow this relationship [2], since the experimental values follow $\tau_{SF}\approx 0.1\tau$ instead. On the other side, recent measuremnts have proven that side-feeding times can be much larger than state lifetimes [4]. There is then the natural question whether the observation of very short side-feeding times in ⁷⁵Br corresponds to contrasting structural effects in the continuum or, as shown in Ref. [4] for other cases, they might be an effect of a type of analysis in which the side-feeding effects are not properly taken into account.

An array of eight HPGe and two clover gamma-ray detectors was used to analyze the gamma-decay of 75 Br after the heavy-ion fusion-evaporation reaction 48 Ti(30 Si,p2n) at 85 MeV beam energy with projectiles provided by the LINAC of the Nuclear Structure Laboratory of the Florida State University in Tallahasse. After production in a 1 mg/cm² 48 Ti foil, the recoil nuclei slowed down in a thick Ta backing (Doppler shift attenuation method). We report on the lifetimes measured in the ground state between $I^{\pi}=13/2^{+}$ and $37/2^{+}$, two states above the previous measurement by Lühmann et al. [2].

- [1] E. Galindo and F. Cristancho, Rev. Col. Fisica 29 (1997) 359.
- [2] E. Galindo, Thesis. Universidad Nacional de Colombia (1997), unpublished.
- [3] L. Lümann et al., Phys. Rev. C **31** (1985) 828.
- [4] C. Cardona et al., Phys. Rev. C (2003). In press.