기술보고서

KAERI/TR-4065/2010

KURT 시설 내 극 저준위 감마분광시스템 구축

Establishment of Ultra-low Background Gamma Spectrometer System in KURT

한국원자력연구원

제 출 문

한국원자력연구원장 귀하

본 보고서를 2009년도 "다목적 지하연구시설 선진연구설비 구축"과제의 기 술보고서로 제출합니다.

2010. 6.

과 제 명 : 다목적 지하연구시설 선진연구설비 구축

주 저 자 : 이완로 공 저 자 : 김 경 수 최 근 식 강 문 자

요약문

I.제 목

KURT 시설 내 극 저준위 감마분광시스템 구축

Ⅱ. 연구개발의 목적 및 필요성

대기권핵실험이 중단된 이후 낙진에 의한 환경방사능 준위는 점점 낮아지고 있기 때문에 환경 중 저준위 방사능을 검출하기 위한 방법으로는 다량의 시료를 채취, 농축하여 검출하한치를 낮추는 방법이 일반적인 해결법이다. 그러나 다량의 시료채 취가 불가능한 경우 또는 시료의 전처리 없이 시료를 파괴하지 않고 간단하면서 빠 르게 측정하기 위해서는 기존의 계측법으로 검출이 어렵기 때문에 저준위 감마계측 기를 사용하여 측정할 필요성이 있다.

Ⅲ. 연구개발의 내용 및 범위

본 연구에서는 주로 다음과 같은 내용들을 중심으로 수행하였다.

- KURT 내 극저준위 감마분광시스템 구축
- KURT 내에 라돈 백그라운드 측정 및 분석
- 미량시료 분석기술 개발

Ⅳ. 연구개발결과

역동시장치를 이요한 극저준위 시스템을 구성하였다. 또한 능동식 차폐체를 이용 한 역동시 회로의 성능을 평가하였고, 일체형 시스템에서 분리 모듈형 시스템으로 수정 보완하여 독립적으로 사용이 가능하게 하였다.

환기시설이 가동되지 않을 경우에는 일반 실험실 공간보다 7배 이상 라돈이 높게 측정되었다. 그러나 환기시설이 가동될 경우에는 라돈의 영향은 일반 실험실에 비 해서 차이가 없었다. 따라서 지하연구시설에 극 저준위 감마핵종 분석 시스템 구축 시 환기시설이 가동될 경우 문제가 없는 것으로 평가되었다.

고순도 반도체 감마분광시스템을 이용하여 토양 시료의 우라늄 방사능 분석 기술 을 개발하였다.

Ⅴ. 연구개발결과의 활용계획

KURT내에 백그라운드가 획기적으로 저감된 시설을 구축하였고 본 장치를 이용하 여 미량시료 분석기술을 개발하였다. 이를 통해서 전처리없이 경제적으로 신속 분 석이 필요한 곳에서 제시된 방법이 다양하게 이용될 수 있을 것이다.

Summary

I. Project Title

Establishment of Ultra-low Background Gamma Spectrometer System in KURT

${\rm I\!I}$. Objective and Importance of the Project

In order to measure an ultra-low background sample, an ultra-low background gamma spectrometer at underground laboratory using hybrid Compton suppression and anti-coincidence method is needed.

III. Scope and Contents of Project

To reduce the background induced by cosmic ray, an ultra-low background gamma spectrometer at underground laboratory using hybrid Compton suppression and anti-coincidence method is developed.

This report has following contents:

· Setup of Ultra-low Background Gamma Spectrometer System in KURT

• Measurement of radon concentration in order to test performance of the designed system

· Measurement of small sample without the chemical preprocessing

IV. Result of Project

An ultra-low background gamma spectrometer at underground laboratory using hybrid Compton suppression and anti-coincidence method is developed. The designed ultra-low background gamma spectrometer is composed of HPGe detector, NaI scintillation detectors for Compton suppression, and plastic scintillation sensors as a guard detector for the background reduction, and electronic circuits for signal processing. Influence of radon radionuclide is studied in order to test performance of the designed system. The background increase problem of radon will be solved by ventilation and injection of pure nitrogen gas. Using this setup system, measurement of small sample is performed without the chemical preprocessing The results of measurement were compared with those results with conventional alpha spectrometer and two results were similar from within uncertainty range.

V. Proposal for Applications

This new system and method will be applied in many field where the chemical preprocessing is not a necessity

CONTENTS

Chapter 1. Introduction1
Chapter 2. Establishment of ultra-low background gamma
spectrometer system
Section 1 Design of ultra-low background gamma spectrometer system3
Section 2 Performance test of sltra-low background gamma spectrometer
system ······8
Chapter 3. Radon measurement in KURT14
Section 1 Introduction
Section 2 Experiment and results14
Section 3 Summary14
Chapter 3. Development of analysis for small sample
Section 1 Introduction
Section 2 Experiment and results19
Section 3 Results28
Section 4 Summary
Chapter 5. Discussion and Results
Chapter 6. References

제	1 장	서론1
제	2 장	극 저준위 감마분광시스템 구성3
	제1절	극 저준위 감마분광시스템 설계
	제2절	극 저준위 감마분광시스템 성능평가8
제	3 장	KURT 내 라돈 백그라운드 준위측정
	제1절	개 요 ~~~~~ 14
	제2절	실험 및 결과
	제3절	요약
제	4 장	극미량시료 분석기술 개발
	제1절	서 론
	제2절	분석방법 ~~~~ 19
	제3절	결과 및 논의
	제4절	요 약
제	5 장	토의 및 결언
제	6 장	참고문헌

제 1 장 서론

대기권핵실험이 중단된 이후 낙진에 의한 환경방사능 준위는 점점 낮아지고 있기 때문에 환경 중 저준위 방사능을 검출하기 위한 방법으로는 다량의 시료를 채취, 농축하여 검출하한치를 낮추는 방법이 일반적인 해결법이다. 그러나 다량의 시료채 취가 불가능한 경우 또는 시료의 전처리 없이 시료를 파괴하지 않고 간단하면서 빠 르게 측정하기 위해서는 기존의 계측법으로 검출이 어렵기 때문에 저준위 감마계측 기를 사용하여 측정할 필요성이 있다.

현재의 KURT 시설을 이용하여 지하에 일반 감마분석 시스템을 설치하여 우주선을 차폐하면 쉽게 극 저준위 시스템을 구축할 수 있다. 이런 극 저준위 시스템은 현재 미량 의 핵사찰 시료분석 및 핵 활동 환경시료에 활용되고 있으며 그 밖에 고집적 반도체의 불순물 측정, 이중베타붕괴, 암흑물질 탐색 등 다양한 분야에서 이용되고 있다. 또한 극미량시료/저준위 시료의 감마핵종 분석 및 인공 방사능 축적경향 자료 생산을 통해서 중국의 황사에 의한 방사능 변화 및 비상시 미량/저준위 방사능 농도의 변화를 쉽게 측정할 수 있어 다양한 분야에 응용이 가능하다. 우리나라 독자적인 극미량 감마분석 시스템의 체계적 구축은 방사능 축적경향 자료 생산을 통해서 중국의 황사에 의한 방사 능 변화 및 비상시 미량/저준위 방사능 농도의 변화를 쉽게 측정할 수 있어 방사능 비상 시 위기관리능력 향상 및 정부의 신뢰 증진에 필수적이다.

국미량시료의 방사능 준위 변화 측정, 역사유적의 정확한 연대측정, 고집적 반도체에 서의 불순물 측정, double beta decay, solar neutrino 및 우주의 생성, 기타 물리법칙들을 입증하기 위해서 극저준위 백그라운드 감마분광 방법이 널리 이용되고 있는 실정이다. 이런 극미량의 샘플을 측정하기 위해서는 주변의 백그라운드 영향을 최소화해야 한다. 백그라운드의 요인으로는 크게 세 종류가 있는데 첫째는 검출기를 둘러싸고 있는 차폐 체에 의한 방사능이고 둘째는 검출기 내부에 존재하는 공기중에 방사성 동위원소가 있 고 마지막으로 우주선 및 우주선이 주변 물질과 반응해서 생성되는 2차 방사선 등으로 구분할 수 있다. 위에서 분류한 백그라운드 중 우주선에 의한 영향이 가장 크고 이를 줄이는 방법은 쉽지 않다. 우주선에 의한 백그라운드를 줄이기 위한 가장 쉬운 방법은 모든 검출 시설을 1400 m 이상 지하에 설치하는 것이다. 실제로 처음에는 이런 방법을

이용해서 여러 나라에서 극저준 백그라운드 시스템을 유지하였으나 이 방법은 실험실 의 유지 및 분석에 많은 제약을 받고 있다. 1970년대 이후에 Ge 검출기와 액체 또는 플라스틱 섬광검출기를 guard 검출기로 이용하여 역동시 (anti-coincidence)회로를 구 성했으며, 이를 통해서 우주선을 ground-level에서 효과적으로 차페하는 방법이 제시된 후 많은 나라에서 이에 관한 연구를 수행중에 있다. 1987년에 미국 J.H. Reeves와 R.J. Author등이 박스형 플라스틱 섬광검출기를 guard용으로 사용하여 우주선을 효과적으 로 차폐하였다. 현재 미국의 PNNL (Pacifie Northwest National Laboratory)연구소에 서는 극 미량의 환경시료를 정밀 측정분석하기 위해서 여러 가지 백그라운드 저감법을 연구하고 있으며 이곳에서는 지하 4084m에 설치된 시스템과 지상에 역동시회로를 이용 하여 백그라운드를 저감하는 방법을 동시에 활발히 연구하고 있다. 또하 프랑스, 벨기 에, 타이완, 독일, 러시아 등에서도 이와 비슷한 장치를 운영하고 있으며 1/100 cps 이하 로 백그라운드를 저감하고 있다. 국내에서는 북한의 미 신고된 핵시설을 적시에 핵사찰 할 목적으로 1997년에 원자력 연구원의 원자력환경 관리센터에서 처음으로 연구를 시 작했으며, 그 이후에 연구가 잠시 중단된 후 2002년부터 본 연구실에서 지상에 역동시 회로를 이용하여 시스템을 확보하고 있는 실정이나 백그라운드를 낮추는데 한계가 있 다[1-1, 2, 3].

제 2 장 극 저준위 감마분광 시스템 구성

제 1 절 극저준위 감마시스템 설계

원래 6개의 MCA를 이용하는 방식에서 MCA 2개를 사용하고, 컴프턴 제거장치와 역동 시 저감장치를 분리가능하도록 설계하여 순차적으로 설치할 수 있도록 설계를 변경하 였다. (그림 2-1, 그림 2-2)

그림 2-1 극 저준위 감마시스템 구성도

그림 2-2 수정된 극저준위 감마시스템 구성도

극저준위 감마시스템에서 고려해야 할 백그라운드 요인을 살펴보면 세 가지로 요약될수 있다.

첫째는 계측기 및 차폐체 자체에서 존재하는 방사성 물질

둘째는 공기 중에 존재하는 라돈 및 그 딸 핵종에 의한 것

셋째는 우주선등에 의한 외부방사선에 의한 것

첫 번째 요인에 의한 백그라운드는 특수 저준위 물질을 이용하여 줄일 수 있기 때 문에 극저준위 납을 이용하여 설계하였다. 두 번째 요인의 백그라운드는 고순도 질 소가스 유입을 통해서 줄일 수 있고 측정시 질소가스를 내부에 유입해서 줄일 수 있도록 하였다. 우주선에 의한 백그라운드는 저감화는 두 가지 방법을 이용하였다. 첫째는 장비가 지하에 설치되기 때문에 암반등에 의한 백그라운드 저감화 및 10 cm 이상되는 납차폐체를 이용하여 2차로 차폐하도록 하였다. 두 번째는 역동시회로 를 이용하여 저감화할 수 있다.

▷ 수동차폐 시스템

우주선등을 자연적으로 차폐하는 가장좋은 방법은 지하 수백미터에 실험실을 장비

를 구축하는 것이다. 현재 KAERI에 구축중인 지하 연구시설에 본 장치를 설치하기 때문에 일반 실험실보다 우주선 차폐효과가 좋다. 아래 그림은 본 장비가 설치될 위치를 보여주고 있으며 약 지하로 40m정도에 위치해 있다. 지하에 설치해서 1차로 우주선을 차폐하도록 하였다.(그림 2-3)

두 번째 수동적 차폐는 백그라운드에 영향을 미치는 실험실 내부의 방사성 동위원 소에서 방출되는 감마선을 최대한 차단하기 위해서는 원자번호가 높은 물질로 Ge 검출기를 차폐하는 것이다. 차폐체로서 납을 가장 많이 사용하고 있는데, 세계 2차 대전을 전후로 하여 많은 핵실험이 지구상에서 행해졌기 때문에 일반적인 납에는 방사성동위원소에 의한 오염이 되어 있다. 따라서 안정된 상태의 납도 방사성을 띠 기 때문에, 방사능 농도가 낮은 납을 사용해야 내부의 Ge 검출기에 미치는 백그라 운드를 줄일 수가 있다. 본 연구에서는 10 Bq/kg미만 방사능을 함유한 130 두께의 납으로 차폐하였다. 실험실내부에 존재하는 여러 감마선들은 이러한 납차폐로서 차 단되지만 납원자와의 상호작용으로 인한 X-ray가 발생하게 된다. X-ray를 저감하 기 위해서는 원자번호가 높은 순서대로 극저방사능을 띠는 철, 구리, 알루미늄 등을 차례로 설치하는 구조로 설계하였다. 질소 가스(N₂ Gas)가 꽉 차 있는 상태에서 100 cc/min의 유량을 내부에 흘려줌으로써 작은 틈으로 나가는 질소가스를 보충할 수 있게 하였다. 일반적으로 잡음을 최소화하기 위해서는 가능한 한 전치증폭기는 검출기와 가까이 있어야 하는데, 그럴 경우 전치증폭기 자체에서 나오는 백그라운 드를 제거할 방법이 없어서 전치증폭기를 차폐체외부에 설치하였다. ▷ 능동차폐 시스템

수동적 차폐만으로는 원하는 정도의 백그라운드를 저감화시킬 수가 없다. 따라서 능동적 차폐 방법은 역동시 회로를 이용하는 것으로 우주선에 의해 계수되는 백그 라운드를 최대한 줄이기 위해서 사용하였다. 우주선에 의한 백그라운드 요소는 뮤 온, 속중성자, 열중성자 그리고 양성자들이다. 특히, 뮤온입자는 측정시스템을 통과 하면서 HPGe 결정체와 상호작용하여 Ge 원자를 이온화 또는 여기시킴으로서 백그 라운드를 높이는 직접적인 요인이 되고 있다. 또한 뮤온은 측정시스템의 차폐체와 충돌하면서 고에너지 전자, 제동방사선, 소멸감마선 및 X-선 등을 방출하게 되며, 이때 뮤온에 의해 간접적으로 발생된 방사선에 의한 백그라운드 영향은 차폐의 재 질과 차폐체의 체적에 영향을 받는다. 본 시스템은 우주선에 의한 백그라운드 계수 를 줄이기 위해 40m 지하실험실을 이용하고 여기에 플라스틱 섬광검출기와 HPGe 의 동시계수 방법을 이용하여 이를 구현하였다. 동시계수 방법 즉 역동시 회로의 원리는 다음과 같다. 우주선과 같이 에너지가 높은 방사선은 검출기 주변의 섬광검 출기에 반응하고 동시에 차폐체를 뚫고 고순도 게르마늄 검출기와 반응한다. 동시 에 반응한 경우는 백그라운드로 간주하여 신호에서 제외하는 것이 역동시 차폐방법 이다.(그림 2-4)

그림 2-4 플라스틱검출기를 이용한 역동시 차폐원리

수동 및 능동적 차폐를 이용한 감마분광시스템의 센서부분은 Guard detector(플라 스틱 섬광검출기 : cosmic shield detector)와 HPGe 검출기 및 차폐체로 구성되었 다.(그림 2-5)

외국장비의 경우 매우 거대하지만 본 연구에서 구축한 것은 분석원이 쉽게 접근 하고 운영할 수 있도록 소형화 하였다.

그림 2-5 극저준위 감마분광시스템

제 2 절 극저준위 감마시스템 성능평가

○ 극 저준위 감마시스템 구구성

- 역동시 회로구성 요소 및 시스템 기능을 살펴보면 다음과 같다.

1. 고순도 게르마늄 검출기 (HPGe)

저준위 감마분광 분석을 위해서 검출효율이 좋아야 하며, 본 시스템에 사용된 HPGe의 특성을 살펴보면 다음과 같다. 검출기 타입은 n-type, NaI (3"X3") 섬광 검출기에 대한 상대효율이 50 %이며 분해능은 1.33 MeV에서 2.2 keV의 분해능을 갖는 Canberra사에서 구입하였다.

자세한 사양은 아래와 같다.

- Effective energy range : 3keV to 10MeV
- Resolution : 1.1keV at 122keV, 2.2keV at 1.332MeV.
- Peak to Compton ratio : 58:1
- FWTM : 4.4
- Radiation damage resistant
- Excellent timing resolution
- Diode FET protection.
- Warm-up/HV shutdown
- High rate LED indicator.
- Cooling status LED indicator, Warm : red, Cold : green
- Ion-implanted outside contact : 0.3 µm thick.
- Remote pre-amplifier with 3 meter bias, high voltage inhibit, signal,

and power cables.

** Pre-amplifier **

- Noise(at 0 pF) : Less than 600 eV
- Charge or Energy Sensitivity : 100 or 500 mV/MeV(Ge)
- Charge or Energy Rate Capability : 2 x 105 Mev/sec
- Rise Time : Less than 20 ns
- Test point to measure detector leakage current

- Bias Rating : 5000 V

2. 전치증폭기 (Pre-amplifier)

전치증폭기는 HPGe 검출기에서 나온 신호를 증폭기로 전달해주는 역할뿐만 아니 라, 잡음제거 및 신호의 증폭역할을 한다. HPGe용 한 개와 역동시회로 용 두개를 구입하였다. HPGe용 한 개및 플라스틱섬광용 2개를 구매하였다.

3. 고전압 공급 장치(High voltage power supply)

전압을 인가하여 검출기에서 생긴 전하를 빠른 시간내 수집할 수 있도록 하기 위 해서 필요한 장치이다.

4. 중폭기(amplifier)

re-amplifier에서 나오는 출력펄스를 받아들여 신호의 정형 및 증폭의 역할을 한다. 5. 섬광검출기 (Plastic Scintillation detector)

동시 회로를 구성하기 위해서 HPGe검출기를 둘러싸고 있는 차폐체 외부에 섬광 검출기 6개를 사용하였다. 이 검출기를 보통 Guard detector라고 하는데, 이를 이용 하여 우주선이 어느 방향으로 입사하더라도 플라스틱 섬광검출기에 의해 검출되고 동시에 HPGe에 검출된 신호는 제거하여 백그리운드를 줄일 수 있다. (그림 2-6)

- 50mm x 700mm x 700mm Plastic Scintillation Detector with two PMT

- Aluminum foil and black vinyl cover all around the scintillator

- Light aluminum shielded PMT

- Mounts for Plastic Scintillation Detectors

6. 기타

기타로 필요한 장치는 역동시 회로를 구성하기 위한 동시분석기, 다중파고 분석기, 운영소프트웨어 등이 다수 필요하다. 이에 대한 구매 및 성능테스트를 완료하였다.

○ 극 저준위 시스템 요소 성능테스트

역동시 회로 및 시스템 구축을 위한 메인 요소인, 전치증폭기, 증폭기, 파고선별 기, 시간대 진폭 교환기등에 대한 성능평가를 완료했으며, 아래 그림들은 각각의 파 형들을 보여주고 있다.(그림 2-7, 2-8, 2-9, 2-10)

그림 2-7 전치증폭기 신호(아래), 주 증폭기 신호(위)

그림 2-8 플라스틱 섬광체용 증폭기 신호

그림 2-9 파고선별기 신호

그림 2-10 시간대 진폭교환기 및 감마분광신호 (상:시간대 진 폭교환기 출력신호, 하: 감마분광신호, 그림과 같이 감마분광 신호가 시간대 진폭교환기 gate신호과 겹치는 경우 백그라운 드로 제거)

제 3 장 KURT 내 라돈 백그라운드 준위변화

제 1 절 서론

현재 한국원자력연구원에서는 지하연구시설(KURT; KAERI Underground Research Tunnel)이 구축되어 있으며, 이를 이용하여 지하에 극 저준위 감마핵종 분석 시스템을 구축하고 있다.

본 절에서는 극 저준위 감마핵종 분석 시스템 구축 시 라돈 방사능에 대한 영향을 평가하여 라돈에 의한 백그라운드 증가 영향 및 지하 연구실내에서 실험실원이 거 주할 경우 라돈에 의한 인체에 추가피폭 여부를 평가하였다.

제 2 절 실험 및 결과

라돈에 의한 백그라운드 증가 영향을 평가하기 위해서 이온 챔버 방식의 Alpha Guard (Genitron사) 장비를 사용하여 2008년 2월 19일부터 2008년 2월21일까지 라 돈 농도를 연속으로 측정하였다 (그림 3-1). 또한 지상의 일반적인 연구 실험실내의 라돈 농도와 비교하기 위해서 2008년 2월 21일부터 2008년 2월22일까지 제 3연구동 실험실에서 측정하였다.

그림 3-1 이온챔버를 이용한 동굴내 라돈 분석

그림 3-1에서 보이듯이 라돈의 농도는 외부와 이온 챔버의 확산을 통해서 측정하 는 방식으로 본 장비를 통해서 실시간으로 지하연구시설과 외부 시설간의 라돈 농 도 차이를 측정하였다. 지하연구시설 및 일반 연구실의 라돈 농도 측정결과는 그림 3-2에서 보여주고 있다. 그림 3-3에서 보였듯이 지하연구시설의 경우 환기시스템 이 가동되지 않았을 경우에는 매우 높았으나, 환기시스템을 가동했을 경우에는 거 의 일반 실험실과 거의 비슷한 라돈 방사능 농도인 54.3 Ba/m³를 보였다. 일반 실 험실의 경우 35.3 Bq/m³ 보였다. 일반 실험실 보다 지하연구시설이 약간 높았으나, 화기시설을 지속적으로 가동하고 이온챔버의 불확도를 고려했을 때 극 저준위 감마 핵종 분석 시스템을 구축하는데 라돈의 영향은 크게 없는 것으로 평가되었다. 또한 극 저준위 시스템 내부에 지속적으로 질소가스를 유입시키기 때문에 라돈에 영향은 거의 없을 것으로 판단된다. 다만 지속적으로 환기시스템을 가동해야 할 필요성이 본 연구를 통해서 확인되었다. 환기시설이 중단된 저녁부터 오전까지의 평균 라돈 방사능 농도는 404 Bq/m³ 로 환기시설을 가동했을 때 보다 7 배 이상 높은 것으로 측정되어 극 저준위 시스템의 백그라운드에 영향을 미칠 것으로 판단된다. 지하 연구실내에서 실험실원이 거주할 경우 라돈에 의한 인체에 추가피폭 여부는 다음과 같이 평가하였다. 우리나라 옥내 라돈 연평균 농도인 53.4 Bq/m³ 보다 높은 평균 농도는 0.9 Bq/m³ 이다. 이 추가 방사능으로 인한 유효선량은 UNSCAER 93에서 제시하는 식 (1)을 사용하여 계산되었다.

$$H = Q \cdot F \cdot T \cdot K [Sv] \tag{1}$$

이 때 Q는 ²²²Rn의 농도 [Bq/m³], F는 평형인자, T는 거주시간 (=거주계수(0~ 1)*8,760 [h]), K는 선량환산계수(=9*10⁻⁹ [Sv/(Bq·h·m⁻³)])이다. 평형인자는 보수 적인 관점에서 0.4를 사용하였다. 거주계수는 일과 시간 (9시~18시)만을 고려하여 0.267을 사용하였다. 식 (1)에 의해서 보수적으로 평가한 결과 추가적인 피폭은 거 의 없는 것으로 평가되었다.

그림 3-2 하루동안 KURT(a)과 일반 연구동(b)의 라돈 농도변화 측정

제 3 절 요약

환기시설이 가동되지 않을 경우에는 일반 실험실 공간보다 7배 이상 라돈이 높게 측정되었다. 그러나 환기시설이 가동될 경우에는 라돈의 영향은 일반 실험실에 비 해서 차이가 없었다. 따라서 지하연구시설에 극 저준위 감마핵종 분석 시스템 구축 시 환기시설이 가동될 경우 문제가 없는 것으로 평가되었다. 다만 극 저준위 시스 템 가동 시 측정하는 동안뿐만 아니라 최소한 3시간 이전부터 환기시스템을 가동해 야 함을 알 수 있었다. 또한 지하 연구실내에서 실험실원이 장시간 실험할 경우 라 돈에 의한 인체에 추가피폭 여부를 평가한 결과 환기시스템이 가동할 경우 전혀 문 제가 없음을 알 수 있었다.

제 4 장 극 미량시료 분석기술 개발

제 1 절 서론

일반적으로 환경 중 토양 시료에 대한 우라늄 방사능 농도는 전통적으로 Alpha spectrometry, ICP-MS(Inductively Coupled Plasma-Mass Spectrometry), neutron activation analysis 등의 방법으로 분석한다. 세 가지 방법 중에서 가장 일반적으로 사용되는 것은 알파분광 분석법이다[4-1]. 위에서 설명한 방법들은 저준위 극미량 시료의 정확한 분석에 매우 유용한 방법이나, 측정시간 및 비용, 고가의 장비와 고 도의 분석 기술이 필요하다. 특히 복잡한 단계의 화학적 전처리나 특수 장비가 필 요하고 그 경우 시료를 녹이거나 파괴해야 한다[4-2, 3]. 따라서 시료를 직접 분석 하지 못하고, 변형하기 때문에 시료의 소급성 유지에 어려움이 발생한다. 만일 특이 한 분석결과 획득 시 시료의 변형으로 다시 동일한 조건에서 재분석 분석할 수 없 는 문제점이 존재한다. 물론 시료의 균질성이 확보된 다량의 동일 시료가 있다면 문제가 없지만, 대부분의 경우는 시료의 양이 제한적이기 때문에 재분석시 문제가 발생한다.

HPGe 감마분광시스템을 이용한 우라늄 방사능 분석 기술은 몇몇 연구자들이 시 도하였으나, 시료의 특성에 따라서 적용 방식이 상이했다[4-4, 5]. 주로 P-type의 HPGe 감마분광분석 시스템을 이용하여 우라늄 방사능 농도를 구했다. 그러나 이 경우 저에너지에서 효율의 급격한 감소로 정확한 방사능 농도 결정에 어려움이 발 생한다. 또한 효율이 상대적으로 N-type에 비해 낮아서 검출한계가 높은 단점이 존 재한다. 본 논문에서는 N-type HPGe 감마분광시스템을 기반으로 시료의 특별한 전처리가 필요 없이 분석할 수 있는 기술을 개발하였다. 또한 이를 기존의 방법과 비교하여 그 유용성을 제시하였다.

제 2 절 분석 방법

N-type HPGe 감마분광시스템을 이용하여 우라늄 방사능 농도를 분석하기 위해 서는 우라늄의 일반적인 붕괴 특성을 정확히 알아야하며, 그림 4-1, 2, 3에서는 ²³²Th, ²³⁸U 및 ²³⁵U 붕괴과정을 보여주고 있다. 그림에서 보면 다양한 붕괴과정을 통해서 많은 종류의 알파, 베타, 감마선이 방출된다. 이 중에서 N-type HPGe 감마 분광시스템을 이용한 우라늄 방사능 농도 분석 시 감마방출에너지를 이용한다. 표 4-1과 4-2에서는 우라늄 방사능 농도에 사용되는 감마에너지 및 방출률을 정리하여 요약하였다[4-6, 7]. 감마에너지를 이용하여 우라늄 농도를 구하기 위해서는 기본적 으로 방사평형을 이용해야 한다. 그림 4-1, 2, 3에서 표시된 반감기 등을 고려할 경 우 밀봉하여 3주 이상 시료를 처리했을 경우 ²¹²Pb, ²¹²Bi가 평형을 이루고, ²²⁴Ra역 시 방사평형을 이룬다. 만일 인위적인 행위가 없었다고 가정하면 그 모핵종인 ²²⁸Ac 와 ²³²Th역시 평형을 이루게 된다. 같은 원리로 ²³⁸U과 ²³⁴Th, ²²⁶Ra,²¹⁴Pb, ²¹⁴Bi도 평 형을 이루게 된다. 이 방사평형을 이용하여 ²³⁸U과 ²³⁵U의 방사능 및 농도비를 계산 하였다. 감마분광분석기의 에너지 및 효율교정을 위해서는 59 keV에서 1836 keV의 8개의 혼합선원을 이용하였고, 시료용기는 원통형을 이용하였다.

₉₀ Th	²³² Th 1.41x10 ¹⁰ y		²²⁸ Th (RdTh) 1.913y		
₈₉ Ac	$\downarrow \alpha(y)$	²²⁸ Ac (MsTh ₂) 6.13h	$ \begin{array}{c} & & \\ & & $		
₈₈ Ra	²²⁸ Ra (MsTh ₁) 5.76y	β	²²⁴ Ra (ThX) 3.66d		
₈₇ Fr			م(y)		
₈₆ Rn			²²⁰ Rn (Ta) 55.6s		
₈₅ At			φ α(γ)		
₈₄ Po			²¹⁶ Po (ThA) 0.15s		²¹² Po (ThC') 3.06x10 ⁻⁷ s
₈₃ Bi			ψ α	²¹² Bi (ThC) 60.60m	$\beta, y \downarrow a$
₈₂ Pb			²¹² Pb (ThB) 10.64h	$\beta \downarrow a$ (36.0%) (36.0%)	²⁰⁸ Pb (ThD) (安定)
₈₁ Tl				²⁰⁸ Tl (ThC") 3.053m	β,γ

그림 4-1 토륨 계열 (4n)

TT	²³⁸ U		²³⁴ U				
920	$4.468 \times 10^9 y$	β ∕	2.45x10 ⁵ y				
₉₁ Pa	↓a(y)	^{234m} Pa (UX ₂) 1.175m ↓ ²³⁴ Pa (UZ) 6.75h	$\beta \downarrow_{a} (y) (y)$				
₉₀ Th	$^{234}{ m Th}_{(UX_1)}_{24.10d}$	β(y)	²³⁰ Th (Io) 8.0x10 ⁴ y				
₈₉ Ac			Va(y)				
₈₈ Ra			²²⁶ Ra (Ra) 1.6x10 ³ y				
₈₇ Fr			ν α(y)				
₈₆ Rn			²²² Rn 3.824d		²¹⁸ Rn 3.5x10 ⁻² s		2
₈₅ At			(y)	²¹⁸ At 1.5~2.0s	β (y)		
₈₄ Po			²¹⁸ Po (RaA) 3.05m	β	²¹⁴ Po (RaC') 1.64x10 ⁻⁴ s		²¹⁰ Po (RaF) 138.4d
₈₃ Bi			va(99%)	²¹⁴ Bi (RaC) 19.7m	β Ja (y)	²¹⁰ Bi (RaE) 5.912d	$\beta \downarrow_{\alpha}$
₈₂ Pb			²¹⁴ Pb (RaB) 26.2m	$ \begin{array}{c} & & \\ & & $	²¹⁰ Pb (RaD) 22.3y	$ \begin{array}{c} & & \\ & & $	²⁰⁶ Pb (RaG) (安定)
₈₁ Tl				²¹⁰ Tl (RaC") 1.30m	β Ja (y)	²⁰⁶ Tl (RaE") 4.20m	Ζβ
₈₀ Hg					²⁰⁶ Hg 6.1m	∕ β(y)	

그림 4-2 우라늄 계열(4n+2)

₉₂ U	²³⁵ U (AeU) 7.038x10 ⁸ y				
₉₁ Pa		²³¹ Pa (Pa) 3.28x10 ⁴ y			
₉₀ Th	231Th (UY) 25.52d	$ \begin{array}{c} & & \\ & & $	227 (RdAc) 18.718d		
₈₉ Ac		²²⁷ Ac (Ac) 21.773y	β (98.62%) (y)		
₈₈ Ra		(1.38%)	²²³ Ra (AcX) 11.435d		
₈₇ Fr		²²³ Fr (AcK) 21.8m	$ \begin{array}{c} & & \\ & & $		
86Rn		(5x10 ⁻³ %)	²¹⁹ Rn (An) 3.96s		
₈₅ At		²¹⁹ At 0.9m	β (~3%) (y)	²¹⁵ At 1.0x10 ⁻⁴ s	×
₈₄ Po		(~97%)	²¹⁵ Po (AcA) 1.78x10 ⁻³ s	β (2.3x10 ⁻⁴ %)	²¹¹ Po (AcC') 0.516s
₈₃ Bi		²¹⁵ Bi 7.4m	β μα (99%)	²¹¹ Bi (AcC) 2.15m	β (~0.28%) (γ)
₈₂ Pb			²¹¹ Pb (AcB) 36.1m	β μα (y) (99%)	²⁰⁷ Pb (AcD) (安定)
₈₁ Tl				²⁰⁷ Tl (AcC") 4.77m	_β (ɣ)

그림 4-3 액티늄 계열(4n+3)

1. ²³⁵U의 방사능

감마분광분석기를 이용하여 ²³⁵U 방사능 구하기 위해서는 185.7 keV의 에너지를 측정하는 것이 가장 좋다. 그런데 표 4-1에서 보듯이 ²²⁶Ra에서 나오는 186.2 keV의 에너지와 겹쳐서 과대평가 된다. 따라서 ²³⁵U는 다음과 같은 방법을 이용하여 구할 수 있다. 식(1)에서 보였듯이 에너지 186 keV 근처에서의 계수율은 ²³⁵U과 ²²⁶Ra의 합한 값이다.

 $C(186) = C[^{235}U, 185.7] + C[^{226}Ra, 186.2]$ $A(^{226}Ra) = A(^{214}Pb, 295.2)$ (1)
(2)

식(2)를 변경하면, 다음과 같다.

 $\frac{C(^{226}Ra, 186.2)}{\varepsilon(186.2) \times P_r(186.2)} = A(^{214}Pb, 295.2)$ (3) $C(^{226}Ra, 186.2) = A(^{214}Pb, 295.2) \times \varepsilon(186.2) \times P_r(186.2)$

식(3)을 식(1)에 대입하여 정리하면, 다음과 같다

$$C(^{235}U, 185.7) = C(186) - A(^{214}Pb, 295.2) \times \varepsilon(186.2) \times P_r(186.2)$$
(4)

$$A^{(235}U) = \frac{C^{(235}U)}{\varepsilon(185.7) \times P_r(185.7)}$$
(5)

여기서, $C[^{235}U,185.7]$ 의 의미는 185.7 keV에서 ²³⁵U의 순계수율(#/sec)이다. 뒤에 나 오는 모든 C[x]값은 x 핵종의 순계수율을 의미한다. 또 $\varepsilon(186.2)$, $P_r(186.2)$ 는 각각 효율 및 방출률을 의미한다. 시료를 밀봉하여 3주 이상 방사 평형 시키면 ²²⁶Ra과 ²¹⁴Pb다. 또 은 같아진다. 따라서 식(2)를 이용할 수가 있다. 식(4)를 통해서 순수하 게 ²³⁵U에 의해서 기여한 계수율만을 수하고, 이것을 효율과 방출률을 이용하여 최 종적으로을 ^{의미}한다. 또 농도를 구한다. 예를 들어 $A(^{214}Pb,295.2)$ 경우는 이용할 수가에서 ²¹⁴Pb. 또 농도를 구할 때유을 95.2를 들어 용한 것을 아니라 여 러 방출 아니라중치는 피크는 제외하고 여러 아니라피크를 이용하여 또 을 수하 고 이를 방출률에 비례, 이가중평균을 이용하였방출률뱄 논문에서 이대표적인 에너 지 하나만을 표기하였다.

핵종	에너지	감마방출률	핵종	에너지	감마방출률
(반감기)	(keV)	(%)	(반감기)	(keV)	(%)
Th-227	50.13	8.0	Eu-154	591.763	4.990
(18.72 y)	235.971	12.3	(8.593 y)	723.304	20.22
	256.25	7.0		756.763	4.57
Th-228	84.373	1.22		873.190	12.27
(1.9116 y)				996.262	10.6
Th-231	25.646	14.5		1004.725	18.01
(25.52 h)	84.216	6.6	Eu-155	86.545	30.7
Th-234	63.29	4.8	(4.7611 y)	105.305	21.2
(24.1 d)	92.38	2.81	Co-57	122.0614	85.60
	92.80	2.77	(271.79 d)	136.4743	10.68
T1-208	277.351	6.31	Hg-203	279.1967	81
(3.053 m)	510.77	22.6	(46.612 d)		
	583.191	84.5	Sr-85	514.0067	96
	860.564	12.42	(64.84 d)		
	2614.533	99	Co-60	1173.237	99.9736
U-235	143.764	10.96	(5.2714 y)	1332.501	99.9856
(7.038x10 ⁸ y)	163.358	5.08	Fe-59	192.349	3.08
	185.712	57.2	(44.503 d)	1099.251	56.5
	205.309	5.01		1291.596	43.2
Na-22	1274.53	99.944	Cd-109	88.04	3.61
(2.6019 y)			(462.6 d)		
Eu-152	121.7817	28.58	Ce-139	165.864	80
(13.537 y)	244.6975	7.583	(137.640 d)		
U U	344.2785	26.5	Sn-113	255.05	1.82
	443.965	2.821	(115.09 d)	391.690	64
	778.9040	12.942	Y-88	898.042	93.7
Eu-152	867.378	4.245	(106.65 d)	1836.063	99.2
(13.537 y)	964.079	14.605	Am-241	59.5412	35.9
-	1085.869	10.207	(432.2 y)		
	1112.074	13.644	Mn-54	834.848	99.976
	1408.006	21.005	(312.3 d)		
Eu-154	123.071	40.79	Cr-51	320.0824	10
(8.593 y)	247.925	6.95	(27.7025 d)		

표 4-1 핵종에 따른 감마선에너지 및 방출률

감마방출 감마방출 핵종 에너지 핵종 에너지 률 률 (반감기) (keV) (반감기) (keV) (%) (%) Ac-228 209.253 3.89 Pa-234m 766.38 0.294 (6.15 h) 270.245 3.46 (1.17 m) 1001.03 0.837 338.320 11.27 Pa-234 99.853 3.2 463.004 4.40 (6.7 h) 131.30 18 4.25 794.947 152.720 6.0 25.8 4.2 911.204 226.50 964.766 4.99 227.25 5.8 8.2 15.8 569.50 968.971 3.22 733.39 6.9 1588.19 ANN 511.00 883.24 9.6 Be-7 7.8 477.595 10.52 925.0 926.72 7.2 (53.12 d) Bi-214 609.312 46.1 946.00 13.4 (19.9 m) 768.356 4.94 Pb-210 46.539 4.25 3.03 934.061 (22.3 y) 1120.287 15.1 Pb-212 115.183 0.592 1238.110 5.79 (10.64 h) 238.632 43.3 3.28 1377.669 4.00 300.087 1729.595 2.92 415.2 0.143 Pb-214 1764.494 15.40 53.2275 1.2 2204.21 5.08 (26.8 m) 241.997 7.43 Cs-134 8.35 295.224 19.3 563.246 (2.0648 v) 37.6 569.331 15.38 351.932 97.62 604.721 785.96 1.07 3.22 795.864 85.53 Ra-223 144.232 801.953 8.69 (11.435 d) 154.21 5.62 Cs-137 269.459 13.7 661.657 85.1 (30.07 y) 323.871 3.93 I-131 284.305 6.14 338.281 2.79 81.7 Ra-224 (8.02070 d) 364.489 240.986 4.10 636.989 7.17 (3.66 d) K-40 1460.830 11 Ra-226 186.211 3.59 $(1.277 \times 10^9 \text{ y})$ (1600 v)

표 4-1 (계속)

2. ²³⁸U의 방사능 농도 계산

감마분광분석기를 이용하여 ²³⁸U의 경우 구하는 여러 방법이 있으며, 약간 복잡하 다. 먼저 ^{234m}Pa에서 나오는 1001.03 keV를 이용서 구할 수 있다. 이 경우는 방출률 이 너무 낮아서 ²³⁸U의 농축되었던 시료의 분석은 가능하나, 일반 환경시료에는 적 용하기 힘들다. 따라서 일반적으로는 ²³⁴Th에서 방출되는 63.39 keV, 92.38 keV를 이용하여 분석이 가능하다. 표 4-2에서 보면 63.39 keV의 경우도 ²³²Th에서 방출되 는 63.9 keV와 겹쳐지기 때문에 ²³⁵U 구하는 방법과 같이 추가된 부분을 차감해야 한다.

²³⁴ Th ²³² Th		Th	228	Ac	227,	Th	
energy (keV)	yield (%)	energy (keV)	yield (%)	energy (keV)	yield (%)	energy (keV)	yield (%)
62.39	4.8			338.3	11.27		
92.38	2.81	63.9	0.263	911.25	25.8	93.93	1.4
92.80	2.77			968.97	15.8		

(6)

(7)

표 4-2 감마방출에너지 및 방출률

$$C(63) = C[^{234}Th, 63.39] + C[^{232}Th, 63.9]$$

 $C(^{232}Th, 63.9) = A(^{228}Ac, 332.32) \times \varepsilon(63.9) \times P_r(63.9)$

여기서, 방사능 ²³²Th과 ²²⁸Ac는 방사능이 같은데 그 이유는 방사평형 때문이다.

식(7)을 식(6)에 대입하여 정리하면,

$$C(^{234}Th, 63.39) = C(63) - A(^{228}Ac, 332.32) \times \varepsilon(63.9) \times P_r(63.9)$$
(8)

$$A(^{234}Th) = \frac{C[^{234}Th, 63.39]}{P_r(63.39) \times \varepsilon(63.3)} = A(^{238}U)$$
(9)

92.8 keV를 이용하여 구하는 방법은 위와 거의 비슷하며 식(10), (11)로 표현할 수

있다. 93 keV에서의 계수율은 세 가지 핵종에 의해서 합산된 값인데 그 핵종은 ²³⁴Th의 92.38 keV와 92.8 keV 및 ²²⁷Th의 93.93 keV를 의미한다.

$$C(93) = C[^{234}Th, 92.38] + C[^{234}Th, 92.8] + C[^{227}Th, 93.93]$$
(10)

$$C[^{234}Th, 92.38] = \frac{\varepsilon(92.38) \times P_r(92.38)}{\varepsilon(92.8) \times P_r(92.8)} \times C[^{234}Th, 92.8]$$
(11)

표 4-1에서의 방출율과 그림 4-4의 효율 값을 적용하면 식(12)와 같이 정리된다.

$$C[^{234}Th, 92.38] = \frac{2.81}{2.77} \times C[^{234}Th, 92.8] = 1.014 \times C[^{234}Th, 92.8]$$
(12)

여기서 에너지가 거의 비슷하기 때문에 N-type HPGe검출기에서 효율은 거의 같고 (ε(92.38)≅ε(92.8)) 또 C[²³⁴Th,92.8]의 계수율을 x로 표현하여 다시 식(12)를 정리 하면 식(13)처럼 표현할 수 있다.

 $C[^{234}Th, 92.38] = 1.014x$

(13)

또 ²³⁵U과 ²²⁷Th의 방사평형을 이용하여 정리하면 식(14)와 같이 표현된다. 여기서 0.9862의 의미는 그림 4-3에 보여주고 있듯이 ²³⁵U에서 ²²⁷Th으로 붕괴 될 때 ²²⁷Ac 에서 ²²⁷Th으로 베타 붕괴하는 비율을 의미한다.

$$\frac{C(^{227}Th,93.93)}{\varepsilon(93.93) \times P_r(93.93)} = 0.9862 \times A(^{235}U,185.7)$$
(14)
$$C(^{227}Th,93.93) = 0.9862 \times A(^{235}U,185.7) \times \varepsilon(93.93) \times P_r(93.93)$$

식(14)와 식(13)을 식(10)에 대입하여 정리하면 아래의 식(15)와 같이 표현된다.

 $C[93] = 1.014x + x + 0.9862 \times \Pr(93.93) \times A^{(235}U, 185.7) \times \epsilon^{(237}Th, 93.93)$ (15)

식(15)에서 C[93], Pr(93.93), A(²³⁵U,185.7), \epsilon(²³⁷Th,93.93) 값들은 측정에 따라 알려

진 값이기 때문에 최종적으로 x인 C[²³⁴Th,92.8]값을 구할 수 있다. 또한 ²³⁸U와 ²³⁴Th의 방사평형으로 ²³⁴Th의 방사능을 구하면 ²³⁸U 방사능을 구할 수 있다. 따라서 식(16)에 의해서 ²³⁸U 방사능을 구할 수 있다.

$$A(^{234}Th) = \frac{C[^{234}Th, 92.8]}{P_r(92.8) \times \varepsilon(92.8)} = A(^{238}U)$$
(16)

²³⁸U 방사능은 식(9)와 식(16)을 이용하여 구할 수 있다. 이렇게 구한 결과값을 평 균하여 최종적으로 ²³⁸U 방사능을 구했다. ²³⁸U 방사능을 ²³⁴Th의 92 keV에너지 영 역에서 구할 경우는 표 4-2에서 보였듯이 92.38 keV와 92.80 keV를 구분하지 않고 합해서 구한 후 반으로 나눠줘서 구하는 경우가 있다. 그럴 경우 92.38 keV와 92.80 keV의 방출률 차이로 인한 차이 및 ²²⁷Th의 93.93 keV에서 기인한 차이 때문에 실 제 값과 다른 경우가 종종 발생한다. 따라서 위에서 제시한 방법으로 구하는 것이 차이를 줄이는 방법이다.

제 3 절 결과 및 논의

²³⁸U 방사능 분석을 위해서는 앞에서 언급했듯이 63 keV 방출 감마선과 92 keV 방출 감마선이 이용되는데 P-type의 경우에는 저에너지에서 효율이 급격히 변한다. 그림 4-4에 나와 있듯이 효율의 변화가 N-type에 비해서 매우 심하다. ²³⁸U 방사 능 186 keV 근처에서 방출되는 감마선을 이용하기 때문에 P-type 및 N-type 모두 검출기 가능하다. 주변 환경이 다른 지역에서 채취한 토양을 N-type 감마분광검출 기를 이용하여 분석하고 그 시료를 알파핵종분석기로 분석하여 비교검증 하였다. 또한 그동안 알파분광검출기로 검출한 그 지역의 우라늄 백그라운드와 비교하였다.

그림 4-4. P-type and N-type HPGe의 효율비교

3.1 ²³⁵U의 방사능 결정

먼저 ²¹⁴Pb, ²¹⁴Bi 및 경우에 따라서는 ²¹⁰Pb의 방사능을 분석하여 ²²⁶Ra 방사능 농도 를 구했다. P-type의 경우에는 ²¹⁰Pb의 방사능은 구하기가 매우 어려웠다. 왜냐하면 ²¹⁰Pb의 방출에너지가 46 keV 근처인데 이 경우 앞에서 언급했듯이 효율의 변화가 급격하게 변하기 때문에 정확한 효율을 구할 수 없기 때문이다. 본 논문에서 사용 한 N-type검출기를 이용하여 세 핵종의 방사능 농도를 구하고 이것을 평균하여 ²²⁶Ra 방사능을 구했다. 이렇게 구한 방사능 농도를 이용하여 식(3)에 대입하여 185 keV에서 ²²⁶Ra에 의한 계수율을 구하고 식(4) 및 식(5)를 통해서 ²³⁵U 방사능을 구 했다. 표 4-3에서 ²³⁵U 방사능을 보여주고 있다.

3.2²³⁸U의 방사능 결정 및 알파분광법과의 비교

²³⁸U 방사능은 ²³⁴Th과의 방사평형을 이용하였다. ²³⁴Th의 농도는 63 keV 근처에서 방출되는 감마선을 직접 측정하여 방사능을 결정하였다. 식(6)에서 보면 63 keV 근 처에서 ²³⁴Th과 ²³²Th이 거의 같은 에너지를 방출하기 때문에 ²³²Th의 기여분을 제 거하여 줘야 한다. 그것은 ²²⁸Ac 방사능을 측정하여 기여분을 식(8)과 같이 제거하 였다. 최종적으로는 식(9)를 이용하여 ²³⁸U 농도를 구하였다. 이렇게 구한 결과값들 이 불확도는 95 % 신뢰구간에서 대략 8~13 % 정도이기 때문에 93 keV에서 다시 한 번 계산하였다. 식(15) 및 식(16)을 이용하여 계산하였고 앞서 언급했듯이 겹치 는 부분은 식(10)을 이용해서 제거하였다. 이렇게 구한 결과값을 63 keV에서 구한 값과 비교하여 최종적으로 방사능을 계산하였다. 표 4-3에서는 이렇게 구한 결과값 을 보여주고 있다. 표 4-3에서 보면 세 가지 시료에서 알파분광결과와 비교했을 때 ²³⁵U의 경우는 최대 15 %였고, ²³⁸U의 경우는 13.2 %였다. 95 %에서 불확도가 최대 13 %정도임을 고려하면 매우 좋은 결과임을 알 수 있었다. 다만 일반 환경시료이기 때문에 방사능이 매우 낮아서 24시간 측정해도 계수치가 적고 그래서 생기는 불확 도로 판단이 되며, 아울러 다중핵종 표준선원을 이용한 효율교정에 의한 불확도가 대략 3 % 정도 이상이기 때문에 그것에 의한 영향도 크다고 할 수 있다. 추후에는 IAEA에서 제공하는 비교적 높은 선원을 이용했을 경우 알파분광으로 구하 결과값 과 차이도 줄어들 것으로 판단되며 또한 불확도도 많이 줄어들 것으로 판단된다.

	Gamma		Alı	pha	Difference (%)	
Sample	²³⁸ U (Bq/kg)	²³⁵ U (Bq/kg)	²³⁸ U (Bq/kg)	²³⁵ U (Bq/kg)	²³⁸ U	235 U
А	20.5	1.13	17.8	1.3	13.2	-15.0
В	24.8	1.2	24.7	1.3	0.4	-8.3
С	27.8	1.3	30.4	1.2	-9.4	7.7

표 4-3 알파분광법과 감마분광법을 이용한 우라늄 농도 측정결과 비교

Sample	Uranii	um (%)
index	²³⁵ U	²³⁸ U
А	0.83	99.17
В	0.75	99.25
С	0.72	99.28

표 4-4 우라늄 농도비

3.3 우라늄 농도비 및 자연백그라운드와 비교

위에서 구한 ²³⁵U와 ²³⁸U 방사능 값을 이용해서 농도비를 구했다. 표 4-4에서 보 면 0.72 ~ 0.83 % ²³⁵U 농도를 보였고, 99.17 ~ 99.28 % ²³⁸U농도를 보여 자연비임을 알 수 있었다. 또한 환경토양에서 우라늄농도의 3년간 변동과 비교하였다. 비교지점 은 한국원자력연구원에서 매년 조사하는 한민대학교의 3년간(2005, 2006, 2007년) 변동범위와 비교하였다[4-8]. ²³⁵U의 경우는 0.610 ~ 1.92이고 ²³⁸U의 경우는 17.0 ~ 45.5를 보고되었는데, 표 4-3에서 분석한 결과와 비슷하였다.

제 4 절 요약

본 논문에서는 고순도 반도체 감마분광시스템을 이용하여 토양 시료의 우라늄 방 사능 분석 기술을 개발하였다. 제시한 방법을 이용한 분석결과와 기존에 일반적으 로 사용하는 알파분광분석법(Alpha Spectrometry) 방법의 결과를 비교했을 경우 방 법론이 타당함을 알 수 있었다. 또한 방사능 농도비등을 통해서 자연방사능 비임을 알 수 있었고 그동안 대전특정 지점의 3년간 변동범위에 해당되었다. 본 논문에서 제시한 방법이 타당함을 알 수 있었고, 따라서 전처리없이 경제적으로 신속 분석이 필요한 곳에서 제시된 방법이 다양하게 이용될 수 있을 것이다. 다만 방사능이 낮 은 일반토양을 분석함으로써 불확도 및 알파분광기와의 비교에서 차이가 비교적 큰 것으로 판단되어 고농도 IAEA시료등을 구입하여 추가적인 검증이 필요할 것으로 판단된다.

제 5 장 토의 및 결언

방사성 동위원소에서 방출되는 감마선 및 우주선을 최대한 차단하기 위해서는 원 자번호가 높은 물질로 Ge 검출기를 차폐하고 10 Bq/kg미만 방사능을 함유한 20 mm 두께의 내벽과 50 Bq/kg 미만의 외벽 130 mm 두께로 구성해서 총 150 mm 두께의 납으로 차폐설계하여 최종적으로 역동시장치를 이요한 극저준위 시스템을 구성하였다. 또한 능동식차폐체를 이용한 역동시 회로의 성능을 평가하였고, 일체형 시스템에서 분리 모듈형 시스템으로 수정 보완하여 독립적으로 사용이 가능하게 하 였다.

환기시설이 가동되지 않을 경우에는 일반 실험실 공간보다 7배 이상 라돈이 높게 측정되었다. 그러나 환기시설이 가동될 경우에는 라돈의 영향은 일반 실험실에 비 해서 차이가 없었다. 따라서 지하연구시설에 극 저준위 감마핵종 분석 시스템 구축 시 환기시설이 가동될 경우 문제가 없는 것으로 평가되었다. 다만 극 저준위 시스 템 가동 시 측정하는 동안뿐만 아니라 최소한 3시간 이전부터 환기시스템을 가동해 야 함을 알 수 있었다. 또한 지하 연구실내에서 실험실원이 장시간 실험할 경우 라 돈에 의한 인체에 추가피폭 여부를 평가한 결과 환기시스템이 가동할 경우 전혀 문 제가 없음을 알 수 있었다.

설치된 시스템을 이용하여 고순도 반도체 감마분광시스템을 이용하여 토양 시료 의 우라늄 방사능 분석 기술을 개발하였다. 제시한 방법을 이용한 분석결과와 기존 에 일반적으로 사용하는 알파분광분석법(Alpha Spectrometry) 방법의 결과를 비교 했을 경우 방법론이 타당함을 알 수 있었다. 또한 방사능 농도비등을 통해서 자연 방사능 비임을 알 수 있었고 그동안 대전특정 지점의 3년간 변동범위에 해당되었 다. 제시한 방법이 타당함을 알 수 있었고, 따라서 전처리없이 경제적으로 신속 분 석이 필요한 곳에서 제시된 방법이 다양하게 이용될 수 있을 것이다.

제 6 장 참고문헌

- [1-1] T. M. Semkow," Low-background gamma spectrometry for environmental radioactivity", Appl. Radiat. Isot., Vol. 57, pp. 213, 2002.
- [1-2] Lino Miramonti, "A very low background HPGe detector operating deep underground at 4800 m water equivalent", Appl. Radiat. Isot., Vol. 57, pp. 209, 2002.R. J. Arthur, J. H. Reeves, "Anticosmic-shielded ultralowbackground germanium detector systems for analysis of bulk environmental sample", J. Radioanal. Nucl. Chem. Vol. 124(2), pp. 435, 1988.
- [1-3] R. L. Brodzinski, J. H. Reeves, F. T. Avignone III and H.S. Miley, "Achieving ultra-low background in a germanium spectrometer", J. Radioanal. Nucl. Chem. Vol. 124, pp. 513, 1988.
- [4-1] IVolchok HL and Planque GDe, EML Procedures Manual, HASL-300, U. S. DOE, 1982.
- [4-2] 일본 과학기술청. 우라늄 분석법, 방사능 분석 시리즈 14, 소화 57년.
- [4-3] 한국원자력연구원. 원자력시설주변 환경방사선평가, KAERI/RR-2723/2006, 2006.
- [4-4] Papachristodoulou CA, Assimakopoulos PA, Patronis NE, Ioannides KG. Use of HPGe r-ray spectrometry to assess the isotopic composition of uranium in soils. JER. 2003:64:195-203.
- [4-5] SR Jopshi. Nuclear spectrometric determination of uranium isotopes without use of radiochemical yield monitors, NIM Physics Research. 1987:A254:349-354.
- [4-6] RB Firestone, VS Shirley(Eds.). Table of Isotopes. 8th ed. New York; Wiley-Interscience. 1996.
- [4-7] http://ie.lbl.gov/education/isotope.htm.
- [4-8] 한국원자력연구원. 원자력시설주변환경방사선평가, KAERI/RR-2979/2008, 2008.

		서 지	정 보	양 식		
수행기관보	닌고서번호	위탁기관보	고서번호	표준보고서빈]호 INI	S 주제코드
KAERI/TH	R-4065/2010					
제목 /	/ 부제	KURT ^	설 내 극	저준위 감마분	광시스템	구축
연구책임지	연구책임자 및 부서명 이완로 (원자력환경안전연구부)					
연구자	및 부 서 명	김경수 (방 최근식 (원 강문자 (원	사성폐기물 자력환경역 자력환경역	물기술개발부) 안전연구부) 안전연구부)		
출 판 지	대전	발행기관	한국원지	력연구원	발행년	2010.6
페이지	<mark>33</mark> p.	도 표	있음(○)	, 없음()	크기	21×29.7Cm.
참고사항	원자력연구	개발사업과기	4]		/	
공개여부 비밀여부	공개(○), 대외비(비공개()). 급비밀 보고서종류		보고서종류	기술보고	서
연구위탁기	기관			계약번호		
초록 (15-	-20줄내외)					

역동시장치를 이요한 극저준위 시스템을 구성하였다. 또한 능동식 차폐체를 이용 한 역동시 회로의 성능을 평가하였고, 일체형 시스템에서 분리 모듈형 시스템으로 수정 보완하여 독립적으로 사용이 가능하게 하였다. 환기시설이 가동되지 않을 경 우에는 일반 실험실 공간보다 7배 이상 라돈이 높게 측정되었다. 그러나 환기시설 이 가동될 경우에는 라돈의 영향은 일반 실험실에 비해서 차이가 없었다. 따라서 지하연구시설에 극 저준위 감마핵종 분석 시스템 구축 시 환기시설이 가동될 경우 문제가 없는 것으로 평가되었다. 설치된 시스템을 이용하여 고순도 반도체 감마분 광시스템을 이용하여 토양 시료의 우라늄 방사능 분석 기술을 개발하였다.

주제명키워드 (10단어내외)	지하처분연구시설, 극저준위 감마시스템, 라돈백그라운드
고순도 감마검출기	

BIBLIOGRAPHIC INFORMATION SHEET							
Performing Org. Report No.		Sponsoring (Report No)rg.).	Stamdard Report No.		INIS Subject Code	
KAERI/TR-4065		1					
/2010							
Title / Subtitle		Establishment of Ultra-low Background Gamma					
		Spectrometer System in KURT					
Project Manager and Department (or Main Author)		Wanno Lee(Nuclear Environment Safety Research Division)					
Researcher and		Kyung-Su Kim(Establishment of multipurpose underground					
Department		research laboratory)					
Mun-Ia Kang(Nuclear Environment Safety Research Division)							
Publication Place	Daejeon	Publisher		KAERI	Pı	ublication Date	Jun. 201 0
Page	<mark>33</mark> p.	Ill. & Tab.	Ye	s(○), No ()		Size	21×29.7Cm
Note							
Open	$Open(\bigcirc), Closed()$						
Classified	Restricte Documen	d(),Class Report Type t				Technical Report	
Sponsoring Org.			Contract No.				
Abstract Line	(15-20 s)						
An ultra-low background gamma spectrometer at underground laboratory using hybrid Compton suppression and anti-coincidence method is developed.							
The designed ultra-low background gamma spectrometer is composed of HPGe							
detector, Naamscintillation detectors for Compton suppression, and plasticm							
scintillation sensors as a guard detector for the background reduction, and							
electronicmcircuits for signal processing. anfluence of radon radionuclide is							
studied in order to test performance of the designed system. The background							
increase problem of radon will be solved by ventilation and injection of pure							
murogen gas. Using this setup system, measurement of small sample is							
performed without the chemical preprocessing. The results of measurement							
two results were similar from within uncertainty range							
Subject Ke (About 10	eywords words)	KAERI Unde Background (Detector	Gamm	nd Research Tu na System, Rad	nne lon	l(KURT), Backgrou	Ultra-Low ınd, HPGe