

²¹¹At and Ovarian Cancer

Jörgen Elgqvist, Medical Physicist, PhD Department of Oncology

The Sahlgrenska Academy

Background

- Research group led by Prof. Ragnar Hultborn and Prof. Lars Jacobsson (The TAT Group)
- Collaboration since 1994 in Gothenburg
- Radiation physics
- Oncology
- Nuclear chemistry

The Gothenburg efforts

- Labeling chemistry
- In vitro studies
- Animal studies
- Clinical studies (phase I study published)

Overall aim:

To evaluate the efficacy and toxicity of 211 At, and other α -particle emitting nuclides.

Ovarian cancer

1–2% life time risk in European and American women.

Metastases	Frequency	Treatment	5-year survival
No	30%	Radical surgery	~85%
Abdominal	60%	Debulking surgery + chemotherapy	~35%
Distant	10%	Chemotherapy	~20%

A new additional therapy is needed.

Previous i.p. RIT of ovarian cancer

- Radionuclides used: 131 I, 90 Y (β -emitters).
- Promising results but a phase III study was not successful.

Low absorbed doses to microscopic tumors owing to:

- **Too long half-life** (bone-marrow dose limiting due to high blood activity).
- Too long particle range for microscopic tumors.

Why ²¹¹At?

- The short range of the $\,\alpha$ -particles High absorbed fraction in small tumors
- The high energy (high LET)

 High abs. dose/decay, less dep. on cell cycle & oxygen
- The short half-life

 Reduces normal tissue irradiation

Some concerns:

- Too short range

All tumor cells are not reached

- Normal tissue toxicity of the $\,\alpha$ -particles Could decrease the therapeutic window
- Availability

Clinical applications may be difficult

Astatine production

PET and Cyclotron Unit, Rigshospitalet, Copenhagen

 209 Bi(lpha ,2n) 211 At

Energy: 28 MeV He⁺⁺

Irr. time: Up to 8 h

Yield: Max 2 GBq

Frequency: 2–3 times/month

Al (7 μm), ²⁰⁹Bi (18 μm)

Nude mice studies

Toxicity

Bone marrow: White blood cell counts - RBE

J Nucl Med, 2005,46:464-71

Kidneys: Glomerular filtration rate

Cancer Biother Radiopharm, In press

Peritoneum: Trans membrane transport

Manuscript

Therapeutic efficacy

Local therapy: Intraperitoneal microscopic tumors

J Nucl Med 2005;46:1907–15 J Nucl Med 2006;47:1342–50

Int J Radiat Oncol Biol Phys 2006;66:1228–37 Nucl Med Biol 2006;33:1065–72

Macroscopic tumors

J Nucl Med 2005;46:2061-7

Renal toxicity in nude mice

²¹¹At-MX35 F(ab')2

- Moderate kidney uptake.
- Tolerable mean absorbed dose to kidneys (~10 Gy).
- Renal toxicity is not critical in therapy using ²¹¹At-MX35 F(ab')2.

Nude mice tumor model

10⁷ OVCAR-3 cells i.p.

Macroscopic tumors 8 weeks post treatment.

Maximal tumor diameter (mm)

Time after inoculation (weeks)

Therapeutic efficacy on i.p. tumors

- Short term

Dissection 2 months after therapy:

- No macroscopic tumors
- No microscopic tumors
- No ascites

Tumor free fraction (TFF)

- Long term

Dissection 7 months after therapy

Microscopic tumors - Efficacy related to tumor size

J Nucl Med 2006;47:1342-1350

Microscopic tumors - Fractionated therapy, 3 in 8 days

5 weeks $\emptyset \approx 0.3 \text{ mm}$

No gain in efficacy, but lower myelotoxicity!

Tumor free fraction (%)

Nucl Med Biol 2006;33:1065-1072

Clinical phase I study

- Women with recurrent ovarian cancer in remission after <u>second line</u> chemotherapy.
- No major adhesions in the peritoneal cavity.
- Informed consent.
- Nine patients included.

J Nucl Med 2009;50:1153-1160

Logistics of the phase I study

Preparations

- Laparoscopy
- Peritoneal catheter insertion
- Peritoneal scintigraphy with ^{99m}Tc
- Pretreatment with KClO₄
 or Kl (P. 6–9)

Sampling

- Blood (1-48h)
- I.p. fluid (1–24h)
- Urine (1–48h)
- Gamma camera (1–48 h)

Infusion/therapy

- 1–2 L Extraneal solution
- 33-120 MBq ²¹¹At-MX35 F(ab')2
- 0.2 MBq ¹²⁵I-HSA

Follow up

- Hematology
- TSH
- Creatinine
- HAMA

Pharmacokinetics in patients

Pharmacokinetics was related to the initial activity concentration (IC) of the infused ²¹¹At-MX35 F(ab')2 solution.

Peritoneal fluid

Plasma

Pharmacokinetics in patients - thyroid uptake

Conclusions phase I study

- **1.** Intraperitoneal administration of ²¹¹At-MX35 F(ab')2 can most probably achieve therapeutic absorbed doses in microscopic intraperitoneal tumors, without observed or estimated toxicity.
- **2.** Maximum tolerable absorbed dose to peritoneum in humans is not known.

The 9 patients:

- Two still without any sign of disease.
- Two with relapse, although not peritoneal.
- Five have died in their disease. Two without peritoneal relapse.
- Total: Only 3/9 have had peritoneal relapse ~4 y after therapy.

<u>Note</u>: The 9 patients included were all in a much more advanced stage than the intended patient population for a phase II-III study, which will be given the treatment directly after <u>primary</u> chemotherapy.

Motif for a phase II study

- Microscopic peritoneal tumors might be the cause of relapse
- Low radiation risk
- Feasible therapy

85 patients needed for detection of ≥30% decrease in recurrence within 2.5 years.

Collaboration between different centers?

Future/ongoing work

- Clinical phase II study
- Possible improvements
 - Add i.v. injection
 - Smaller antibody fragments
 - Pretargeting
 - ²¹³Bi (in collaboration with ITU, Karlsruhe)
- Other types of cancer
 - Prostate cancer, breast cancer.

Authors

Lars Jacobsson, PhD², Håkan Andersson, MD, PhD¹, Tom Bäck, BSc²
Elin Cederkrantz, MSc², Jörgen Elgqvist, PhD¹, Sofia Frost, MSc²
Holger Jensen, PhD³, Sture Lindgren, PhD², Stig Palm, PhD (currently at IAEA)
Ragnar Hultborn, MD, PhD¹

- 1) Department of Oncology, University of Gothenburg, Sweden
- 2) Department of Radiation Physics, University of Gothenburg, Sweden
- 3) PET- and Cyclotron Unit, Rigshospitalet, Copenhagen, Denmark

Co-authors/collaborators

Bengt R Johansson, MD, PhD; The Electron Microscopy Unit, University of Gothenburg **Chaitanya Divgi**, MD, PhD; Hospital of the University of Pennsylvania, Philadelphia, USA **Pernilla Dahm-Kähler**, MD; Department of Obstetrics and Gynecology, University of Gothenburg, Sweden

Alpha emitting radionuclides

Astatine-211

- + Good physical properties ($T_{1/2}$, daughters).
- + Chemistry under development.
- + Specific activity (antigenic sites).
- + "Unlimited sorce" due to 209 Bi(α ,2n) 211 At. Cost: Approx. 2000 Euro per patient.
- Few production facilities, limited capacity.

Alpha emitting radionuclides cont.

Bismuth-213

- + Good physical properties (T_{1/2}, daughters).
- + Chemistry well established.
- + Generator produced.
- Limited sorce of Ac-225?

The TAT Group

www.TargetedAlphaTherapy.com

Thank you for your attention!

