Stanovení nejdůležitějších transportních parametrů sorpce ¹²⁵I⁻, ¹³⁷Cs⁺ a ⁸⁵Sr²⁺ v některých horninách a půdách

Palágyi Štefan¹, Štamberg Karel²

¹Oddělení ukládání odpadů, Divize chemie palivového cyklu a nakládání s odpady, Ústav jaderného výzkumu Řež a. s., 250 68 Husinec-Řež (e-mail: pas@ujv.cz) ²Katedra jaderné chemie, Fakulta jaderná a fyzikálně inženýrská, České vysoké učení technické v Praze, 115 19 Praha

Ukládání vysoce aktivního odpadu do geologických formací vyžaduje studium migrace nebo transportu radionuklidů v poli vzdálených interakcí kde kapalnou fází jsou podzemní vody. Kriteriem schopnosti přírodních bariér (hostitelského prostředí), tj. hornin nebo půd, event. sedimentů, brzdit transport kontaminantů jsou retardační koeficienty; ty jsou nejčastěji získávány z hodnot rozdělovacích koeficientů pocházejících ze statických experimentů.^{1,2} Dynamické kolonové metody umožňují nejen přímé stanovení těchto koeficientů, ale navíc i dalších významných transportních parametrů sorpce jakými jsou rozdělovací koeficient a hydrodynamický disperzní koeficient. Výhoda dynamických kolonových postupů v tzv. otevřeném systému oproti statických postupům v tzv. uzavřeném systému spočívá, kromě jiného v mnohem reálnějším přístupu ke skutečným podmínkám studovaného, reílného systému. Pro laboratorní migrační (nebo transportní) studie sorpce radionuklidů, kolonové metody jsou užitečné zejména tam, kde advektivní transport dominuje nad difusí^{3,4}. Literární rešerše prokázala, že dynamické kolonové metody jsou hojně využívané při vyšetřování transportu radionuklidů v porézních materiálech⁴⁻⁷. Při transportu radionuklidů přes krystalické horniny, půdy a písky s vysokým obsahem křemene, které patří také mezi porézní substráty, dochází k interakci radionuklidů v systému pevná fáze - podzemní voda různými mechanizmy (sorpce, iontová výměna, povrchová komplexace, difúze v matrici, disperze, zředění a pod)⁵⁻⁷, které různou mírou přispívají k retardaci radionuklidů.

V této práci byly studovány dvě metody stanovení nejdůležitějších transportních parametrů, a sice rovnovážných parametrů a hydrodynamického disperzního koeficientu, pro sorpci $^{125}\Gamma$, ¹³⁷Cs⁺ a ⁸⁵Sr²⁺. Pevná fáze byla tvořena podrcenými granitoidními horninami typu dioritu a tonalitu, nebo jílovitou hlinitopísčitou půdou, kapalná pak syntetickou podzemní vodou. První metoda se zakládá na předpokladu reverzibilní lineární sorpce radionuklidů na pevnou fázi, tj. s konstantní hodnotou rozdělovacího koeficientu (Kd), kdežto druhá metoda předpokládá reverzibilní nelineární sorpci, charakterizovanou nelineární sorpční izotermou. Obě metody využívají experimentální průnikové křivky⁸⁻¹¹, které se fitují pomocí integrované formy výše zmíněné 1-D advekčně-disperzní rovnice (ADE), vyjádřené explicitně pro pulzní způsob zavádění radionuklidů do proudu syntetické podzemní vody bezprostředně před jejím vstupem do kolony. Integrovaná forma ADE rovnice byla modifikována tzv. koeficienty polohy a výšky maxima příslušné průnikové křivky. Druhá metoda je složitější, protože vyžaduje výpočet nejen retardačního koeficientu měnícího se během transportu, ale i dvou parametrů Freundlichovy rovnice nelineární izotermy. V obou případech byla k výpočtu zmíněných parametrů používána metoda nelineární regrese. Navržené metody byly vzájemně porovnávány při fitování experimentálních průnikových křivek a při stanovení transportních parametrů uvedených radionuklidů.

Experimentální část

Podmínky laboratorních experimentů byly podrobně popsány v naších pracích, které byly uveřejněny ve sbornících seminářů Radioanalytické metody IAA'07, IAA'08 a IAA'09¹²⁻¹⁴.

Vodné roztoky beznosičových preparátů ¹²⁵ Γ , ¹³⁷Cs⁺ and ⁸⁵Sr²⁺, o vysoké radiochemické čistotě (min. 99%), byly dávkovány ve formě pulsu do dané kolonky (o daném objemu a počáteční aktivitě A_0). Aktivita kapalných vzorků odebíraných na výstupu z kolonky byla měřena danou dobu za použití automatického NaI/Tl gamma počítače.

Transportní modely

Obě výše zmíněné metody jsou založeny na analyticky integrované formě jednoduché advekčně-disperzní rovnice (ADE), která byla použita pro fitování experimentálních dat a sestrojení průnikové křivky (PK) více či méně nesymetrického zvonkového tvaru.

Lineární (i nelineární) model je založen na rovnici (1)¹¹:

$$A_{rel} = (1/k_h) \cdot k_p \cdot R_{exp} \cdot \exp[-(k_p \cdot R_{exp} - n_{PV})^2 / (4k_p \cdot R_{exp} \cdot n_{PV} / Pe)] / (4\pi \cdot k_p \cdot R_{exp} \cdot n_{PV} / Pe)^{0.5},$$
(1)

která v podstatě vyjadřuje závislost relativní aktivity (A_{rel}) na počtu pórových objemů (n_{PV}) vodní fáze vytékající z kolony. Přičemž, $A_{rel} = A_{nPV}/A_{nPV,max}$, kde A_{nPV} je aktivita daného n_{PV} a $A_{nPV,max}$ je maximální aktivita dosažená při $n_{PV,Arel,max}$, který odpovídá $A_{rel,max} = 1$. Jak je patrné, rovnice 1 obsahuje dva korekční koeficienty, jmenovitě koeficient na korekci polohy píku (k_p) a koeficient na korekci výšky píku (k_h). Dále platí následující vztahy:

$$R_{exp} = n_{PV,Arel,max}$$
(2)

$$R_{theor} = k_p \cdot R_{exp}$$
(3)

$$R_{theor} = 1 + (\rho \cdot K_d / \theta)$$
(4)

$$k_h = 0.5 \cdot (k_p \cdot Pe/\pi)^{0.5} \cdot \exp[-0.25 \cdot Pe(k_p - 1)^2 / k_p] = A_{nPV,max} / A_0$$
(5)

Když k_p konverguje k 1, potom: $k_h = 0.5 \cdot (Pe/\pi)^{0.5}$

(6)

V uvedených rovnicích R_{exp} a R_{theor} označují experimentální a teoretické retardační koeficienty, ρ je sypná hmotnost, θ je porosita náplně, $Pe = u.L/D_d$ je Pecletovo číslo, u je průsaková rychlost SPV (cm.s⁻¹), L je délka náplně kolony (cm) a D_d je hydrodynamický disperzní koeficient; A_0 je výchozí aktivita roztoku na vstupu do kolony.

Vyhodnocení experimentálních dat pomocí rovnice 1 pozůstává z jejich fitování použitím Newtonovy-Raphsonovy vícedimensionální metody nelineární regrese (schéma algoritmu výpočtu je v naší publikaci¹⁷), v rámci které jsou hledány hodnoty parametrů k_p a Pe^{15} . Jako fitovací kritérium se používá hodnota *WSOS/DF* (Weighted Sum Of Squares divided by the Degrees of Freedom)¹⁶; shoda (jakost fitování) je přijatelná, když platí: $0.1 \le WSOS/DF \le 20$.

Nelineární model

Tento model je více sofistikovaný, protože kromě výpočtu retardačních koeficientů, které během transportu obecně se mění (a také k_p a k_h), vyžaduje výpočet parametrů rovnice Freundlichovy izotermy, jakož i *Pe* čísla. Podrobné zdůvodnění idee použití nelineárního modelu, založeném na klasické ADE rovnici, je možné nalézt v naší publikaci¹⁷. Podstata nelineárního modelu spočívá v definici R_{theor} (rovnice (7)), kde namísto K_d je dosazena první derivace rovnovážné izotermy v bodě C – viz. rovnice (7-9):

$$R_{theor} = 1 + (\rho \cdot / \theta) \cdot f'(C)$$

$$q = kF \cdot C^{nF}$$
(rovnice Freundlichovy izothermy)
$$dq/dC = f'(C) = (nF \cdot kF \cdot (A_{rel} \cdot C_0)^{(nF-1)})$$
(9)

Zde značí: f'(C) první derivaci Freundlichovy rovnice, *q* rovnovážnou koncentraci dané komponenty v pevné fázi, *C* rovnovážnou koncentraci dané komponenty v roztoku, *kF* sorpční kapacitní koeficient, *nF* koeficient charakterizující tvar izotermy, a C_0 koncentraci dané komponenty ve vstupní kapalné fázi. Pro hodnocení experimentálních dat je použita opět výše zmíněná vícedimensionální metoda nelineární regrese¹⁵, pomocí které data jsou fitována za použití regresní funkce, pozůstávající ze třech následujících rovnic (10-12):

$$A_{rel} = (1/k_h) \cdot R_{theor} \cdot \exp\left[-(R_{theor} - n_{PV})^2 / (4R_{theor} \cdot n_{PV}/Pe)\right] / (4\pi \cdot R_{theor} \cdot n_{PV}/Pe)^{0.5}$$
(10)

$$k_h = 0.5 \cdot ((R_{theor}/R_{exp}) \cdot Pe/\pi)^{0.5} \cdot \exp\left[-0.25 \cdot Pe((R_{theor}/R_{exp}) - 1)^2 / (R_{theor}/R_{exp})\right]$$
(11)

$$R_{theor} = 1 + (0.0) \cdot (nF \cdot kF \cdot (A_{rel} \cdot k_h \cdot C_0)^{(nF-1)}).$$
(12)

Jako primární výsledky regrese jsou získány tři parametry: kF, nF a Pe, současně se počítají i hodnoty R_{theor} , k_p a k_h . I v tomto případě kritériem fitování je hodnota $WSOS/DF^{16}$.

Výsledky a diskuse

Jako příklad jsou uvedeny PK transportu ¹³⁷Cs⁺ a ⁸⁵Sr²⁺ získané při průtoku syntetické podzemní vody, SPV, kolonkou s podrceným dioritem-I (průsaková rychlost: u=0.2 cm/min). PK byly vypočítány použitím lineárního i nelineárního sorpčního modelu (Obr. 1). Naměřené a vypočítané hodnoty významných transportních parametrů pro všechny radionuklidy a vzorky hornin jsou uvedeny v Tab. 1 a 2.

- Obr. 1 Experimentální hodnoty transportu ¹³⁷Cs (▲) a ⁸⁵Sr (△) v dioritu-I a jejich fitování teoretickou PK: lineární sorpční model (tenká čára) a nelineární model (tučná čára)
- Obr. 2 Experimentální hodnoty transportu ¹³⁷Cs (●) a ⁸⁵Sr (○) v povrchové půdě a jejich fitování teoretickou PK: lineární sorpční model (tenká čára) a nelineární model (tučná čára)

Podobně pro experimentální hodnoty transportu ¹³⁷Cs⁺ a ⁸⁵Sr²⁺ v půdních vzorcích byly sestrojeny příslušné PK (Obr. 2). Hodnota průsakové rychlosti SPV, zde byla 0.06 cm/min. Významnější transportní parametry jsou uvedeny v Tab. 3 a 4. Z výsledků je evidentní, že kationy ¹³⁷Cs⁺ a ⁸⁵Sr²⁺ jsou efektivněji zachycovány (sorbovány) půdami než horninami, takže námi studované půdy vykazují vyšší sorpční kapacitu a tím i vyšší hodnoty retardačních koeficientů (resp. i vyšší distribuční koeficienty, *K*_d).

Podle hodnot WSOS/DF pro ¹³⁷Cs a ⁸⁵Sr v Tab. 1-4, nelineární model pravidla poskytuje lepší shodu s experimentálními daty než model lineární, a to jak pro horniny tak i pro půdy. Platí to zejména v případech, když parametry nF se líší od 1 ($nF \neq 1$). Jestliže nF = 1, potom $kF = K_d$. Nelineární model ukazuje na to, že hodnota retardačního koeficientu, jakož i korekčních koeficientů se mění během transportu a pomocí příslušných rovnic dá se vypočítat, že se R_{theor} dosahuje minimální hodnoty v maximu PK, resp., když $R_{theor} \approx R_{exp}$. Rozdíly mezi maximálními a minimálními hodnotami retardačních koeficientů jsou přímým důsledkem odklonu

izotermy od linearity¹⁷. Velmi nízkou sorbci anionu ¹²⁵ Γ potvrzuje i nízká hodnota parametru *kF*.

			5		*	
Drcené	Retardační	Koeficient	Koeficient	Peclet	Disperzní	Parametr
horniny	koeficient	pozice	výšky	číslo	koeficient	přijatelnosti
	(-)	píku	píku	(-)	(cm ² /min)	(-)
	R_{exp}	k_p	k_h	Pe	D_d	WSOS/DF
			¹²⁵ I			
Diorit-I	1.6	0.841	1.20	38.2	0.04	32.3
Diorit-II	1.4	0.838	1.24	53.1	0.03	15.2
Tonalit	1.4	0.803	0.95	60.2	0.02	15.0
			¹³⁷ Cs ⁺			
Diorit-I	227	1.20	1.220	22.4	0.06	25.3
Diorit-II	90	1.41	0.719	7.0	0.19	27.7
Tonalit	36	1.26	1.120	25.1	0.06	63.7
			${}^{85}\mathrm{Sr}^{2+}$			
Diorit-I	69	1.04	0.858	8.9	0.16	4.4
Diorit-II	53	1.23	0.797	7.7	0.17	16.6
Tonalit	36	1.04	0.897	9.7	0.15	9.7

Tab. 1. Nejdůležitější transportní parametry ${}^{125}I$, ${}^{137}Cs^+$ a ${}^{85}Sr^{2+}$ v drcených horninách (zrnitost: 0.25 - 0.8 mm, délka kolony: L = 7.3 cm) – lineární sorpční model

Tab. 2. Nejdůležitější transportní parametry ¹²⁵I, ¹³⁷Cs⁺ a ⁸⁵Sr²⁺ v drcených horninách (zrnitost: 0.25 - 0.8 mm, délka kolony: L = 7.3 cm) – nelineární sorpční model

Drcené	Retardační	Koeficient	Koeficient	Pe	Parametry		Parametr
horniny	koeficient	pozice	výšky	číslo	Freund. izot.		přijatelnosti
	(-)	píku	píku	(-)	kF	nF	(-)
1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 -	R_{exp}	k_p	k_h	Pe	m ³ /kg	-	WSOS/DF
			$^{125}\overline{I}$				
Diorit-I	1.6	0.81-2.00	0.41-1.57	32	0.0069	0.971	11.4
Diorit-II	1.4	0.84-1.41	0.56-1.67	35	0.000014	4 0.606	46.6
Tonalit	1.4	0.75-1.06	0.61-1.99	50	0.0065	0.912	17.5
			¹³⁷ Cs ⁺				
Diorit-I	227	1.00-1.76	0.27-1.37	23.0	16.2	0.860	2.81
Diorit-II	90	1.00-2.13	0.17-1.08	14.7	8.99	0.881	22.3
Tonalit	36	1.00-2.10	0.24-1.01	12.3	2.83	0.878	35.5
			${}^{85}\mathrm{Sr}^{2+}$				
Diorit-I	69	1.00-1.06	0.84-0.86	8.9	24.70	0.991	3.3
Diorit-II	53	1.00-1.48	0.59-0.92	7.7	8.98	0.930	16.6
Tonalit	36	1.00-1.74	0.54-0.89	9.7	8.73	0.927	9.7

Tab. 3. Nejdůležitější transportní parametry ${}^{125}I$, ${}^{137}Cs^+ a^{85}Sr^{2+} v$ homogenizovaných půdách (povrchový vzorek: 5-25 cm, hlubinný: 75-100 cm, L = 17.7 cm) – lineární sorpční model

Vzorek půdy	Retardační koeficient	Koeficient pozice	Koeficient výšky	Pe číslo	Disperzní koeficient	Parametr přijatelnosti
1 5	(-)	píku	píku	(-)	(cm ² /min)	(-)
	R_{exp}	k_p	k_h	Pe	D_d	WSOS/DF
			$^{125}\overline{I}$			
Povrchový	0.6	1.14	1.08	14.7	0.05	> 50 (?)
Hlubinný	0.8	1.19	1.53	68.3	0.02	> 50 (?)
			¹³⁷ Cs ⁺			
Povrchový	370	1.06	1.44	25.6	0.04	24.0
Hlubinný	283	1.15	1.67	50.2	0.02	40.4
			85Sr ²⁺			
Povrchový	262	1.5	1.98	49.6	0.02	22.2
Hlubinný	295	0.98	0.80	11.4	0.08	45.7

Tab. 4. Nejdůležitější transportní parametry ${}^{125}I$, ${}^{137}Cs^+ a^{85}Sr^{2+} v$ homogenizovaných půdách (povrchový vzorek: 5-25 cm, hlubinný: 75-100 cm, L = 17.7 cm) – nelineární sorpční model

Vzorek	Retardační	Koeficient	Koeficient	Pe	Parametry Fraund izot		Parametr
pudy		pozice	vysky	(-)	Freund. izot.		(-)
	(-) P		piku k.	(-)	m ³ /kg	m	WSOS/DE
	Nexp	κp	κ_h	16	III /Kg		W505/D1
			$^{125}I^{-}$				
Povrchový	0.6	1.67	0.60	8.34	0.00094	2.10	> 50 (?)
Hlubinný	0.8	1.25	1.17	56.7	0.00044	2.34	> 50 (?)
			¹³⁷ Cs ⁺				
Povrchový	370	0.84-1.09	1.16-1.60	31.9	274	1.03	18.1
Hlubinný	283	1.00-1.24	1.23-1.86	43.7	6.33	0.971	20.1
			85Sr ²⁺				
Povrchový	262	1.00-1.08	1.97-2.05	52.4	91.20	0.977	22.2
Hlubinný	295	1.00-1.15	1.09-1.11	15.0	19.20	0.881	24.9

Výstupem nelineární regrese jsou i hodnoty Pe, ze kterých lze vypočítat D_d . Jak jsme ukázali v naší předcházející práci¹⁷, hodnoty Pe v Tab. 1-4 indikují, že charakter toku se vyznačuje poměrně vysokou disperzí rozpuštěných látek, což může být způsobeno nízkou hodnotou L a u, avšak i nehomogenním uložení vrstvy vzorků, případně i tzv. stěnovým efektem.

Závěr

Klasická 1-D advekčně-disperzní rovnice v integrované analytické formě, modifikovaná korekčními koeficienty pozice a výšky píku, upravená pro popis systému (horniny, půdy – podzemní voda) charakterizovaném lineární (= model 1) i nelineární (= model 2) sorpční izotermou, byla úspěšně použita pro fitování experimentálních průnikových křivek pomocí vícedimensionální Newtonovy-Raphsonovy nelineárně-regresní metody. Bylo zjištěno, že model 2 poskytuje správnější a spolehlivější hodnoty nejvýznamnějších parametrů transportu¹²⁵I, ¹³⁷Cs a ⁸⁵Sr. Navíc se potvrdilo, že ¹²⁵I na použitých substrátech se prakticky nesorbuje, a že retardace ¹³⁷Cs⁺ je vyšší než ⁸⁵Sr²⁺ u homogenizovaných půd než u drcených hornin.

Tato práce byla finančně podpořena GAČR (čís. 104/06/1583) a MŠMT (čís. ME 927 a MSM 6840770020).

- 1. Witherspoon P.A., Bodvarson G.S., Eds, Geological Challenges in Radioactive Waste Isolation, Third Worldwide Review, University of California, Berkeley, December, LBNL- 49767, 2001 pp. 335.
- Alexander W.R., Smith P.A., McKinley I.G., Modelling radionuclide transport in the geological environment, In: Scott EM (Ed.) Modelling Radioactivity in the Environment, Elsevier, Amsterdam, 2003, p. 109-145.
- IAEA TECDOC-413 Scientific and Technical Basis for Geological Disposal of Radioactive Wastes. Vienna, 2003.
- 4. IAEA TECDOC-1563, Spent Fuel and High Level Waste: Chemical Durability and Performance under Simulated Repository Conditions. Vienna, 2007, pp. 29.
- 5. Sims D.J., Andrews W.S., Creber K.A.M., Wang X., J. Radioanal. Nucl. Chem 263 (2005) 619.
- 6. Szenknect S., Ardois C., Gaudet J.P., Barthes V., J. Contam Hydrol, 76 (2005) 139.
- 7. Vanderborght J., Vereecken H., Vadose Zone J., 6 (2007) 140.
- 8. Barnett M.O., Jardine P.M., Brooks S.C., Selim H.M., Soil Sci. Soc. Amer. J., 64 (2000) 9088.
- 9. Palágyi Š., Vodičková H., J. Radioanal. Nucl. Chem., 280 (2009) 3.
- Palágyi Š., Vodičková H., Landa J., Palágyiová J., Laciok A., J. Radioanal. Nucl. Chem., 279 (2009) 431.
- 11. Palágyi Š., Štamberg K., Vodičková H., J. Radioanal. Nucl. Chem., 283 (2010) 629.
- Palágyi Š., Sorpce a desorpce ¹³⁷Cs na kolonách podrcených krystalických hornin za dynamických podmínek. Souhrny přednášek semináře Radioanalytické metody IAA'07, Praha, 2007. Ed.: M. Vobecký, Spektroskopická společnost J. M. Marci a Česká společnost chemická, str. 50-54.
 Palágyi Š., Vodičková H., Palágyiová J., Landa J., Sorpce a desorpce ⁸⁵Sr, ¹²⁵I a ^{152,154}Eu na kolonách
- Palágyi Š., Vodičková H., Palágyiová J., Landa J., Sorpce a desorpce ⁸⁵Sr, ¹²⁵I a ^{152,154}Eu na kolonách podrcených hornin za dynamických podmínek. Souhrny přednášek semináře Radioanalytické metody IAA'08, Praha, 2008. Ed.: M. Vobecký, Spektroskopická společnost J. M. Marci a Česká společnost chemická, str. 50-55.
- 14. Palágyi Š., Vodičková H., Sorpce a desorpce ¹²⁵I, ¹³⁷Cs⁺, ⁸⁵Sr²⁺ a ^{152,154}Eu³⁺ na půdách za dynamických průtokových a statických vsádkových podmínek. Souhrny přednášek semináře Radioanalytické metody IAA'09, Praha, 2009. Ed.: M. Vobecký, Spektroskopická společnost J. M. Marci a Česká společnost chemická, str. 48-54.
- 15. Ebert K, Ederer H, Komputeranwendungen in der Chemie. VCH Verlags-GesellschaftmbH, Weinheim, 1985, p. 321.
- Herbelin AL, Westal AC, FITEQL A computer program for determination of chemical equilibrium constants from experimental data, version 3.2. Report 96-01, Department of Chemistry, Oregon State University, Corvallis,1996.
- 17. Palágyi Š., Štamberg K., Radiochim. Acta, 98 (2010) 359-365.
- Palágyi Š., Štamberg K., Transport of ¹²⁵I⁻, ¹³⁷Cs⁺ a ⁸⁵Sr²⁺ in granitoidic rocks and soil. Booklet of abstract of the 16th Radiochemical Conference, Mariánské Lázně, 18-23 April 2010, p. s182.

Determination of the most important transport parameters for ¹²⁵I⁻, ¹³⁷Cs⁺ a ⁸⁵Sr²⁺ in some granitoidic rocks and soils

Palágyi Štefan¹, Štamberg Karel²

¹Waste Disposal Department, Chemistry of Fuel Cycle and Waste Management Division, Nuclear Research Institute Řež plc, 250 68 Husinec-Řež, Czech Republic

²Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 115 19 Prague, Czech Republic

Two methods for determination of the most important parameters: retardation and hydrodynamic dispersion coefficients of $^{125}\Gamma$, $^{137}Cs^+$ a $^{85}Sr^{2+}$ in crushed diorite and tonalite rocks, as well as in a homogenized soil of loamy sand type have been described. The sorption behavior of these radionuclides, injected into the stream of synthetic groundwater in a single pulse, was investigated in a dynamic flow column arrangement, which experimental details were given previously. Both methods apply breakthrough curves derived from the integral form of 1-D advection-dispersion equation using correction coefficients on the peak position and peak height. The first method uses a linear isotherm approach, when the radionuclide distribution coefficient (K_d) is supposed constant (linear sorption model) the other model applies a non-linear isotherm approach, when K_d is changing during the transport (Freundlich sorption model). In both models a method of non-linear regression has been used. From the comparison of these different models it followed that the non-linear approach gives more accurate and reliable results.