Estudo Teórico-Experimental dos Parâmetros de Intensidade 4f-4f de Novos Materiais do tipo Eu(β -dicetona)₃.2DMSO.

Jorge Fernando Silva de Menezes^{1,*} (PQ), Cláudio Cruz dos Santos¹(IC), Naiara Vieira¹(IC), Fausthon Fred da Silva²(PG), Diego de Paula Santos² (PG), Severino Alves Júnior² (PQ). * fsmenez@hotmail.com

¹Centro de Formação de Professores / CFP - Universidade Federal do Recôncavo da Bahia - Rua das Arapongas, s/n, Loteamento Parque dos Pássaros - Katyara - Amargosa/BA; CEP 45300-000. ²Departamento de Química Fundamental CCEN – UFPE, Cidade Universitária, Recife- PE. CEP 50740-540

Palavras Chave: Lantanídeos, Parâmetros de intensidade, β-dicetonas, európio, sulfóxido.

Introdução

Uma das características marcantes dos íons lantanídeos¹ são as linhas espectrais de emissão finas e intensas derivadas das transições entre os níveis stark². Sendo assim, o estudo tanto teórico quanto experimental dos parâmetros de intensidade de Judd-Ofelt (Ω_{λ}) de tais transições torna-se um fator importante na caracterização e no design de compostos que tenham potenciais aplicações em sistemas luminescentes^{1,2}. Nesse sentido, 0 presente trabalho concentrou-se na síntese e caracterização espectroscópica de novos materiais DMSOdo tipo Eu(L)₃.2DMSO, onde dimetilsúlfóxido e L as β -dicetonas do tipo: 1,1,1trifluor-2,4-pentadiona (1-TFAA), 1,1,1-trifluor-5,5dimetil-2,4-hexanodiona (2-PTA) e 4,4,4-trifluor-1fenil-1.3-butanodiona (3-BTFA), a saber :

Resultados e Discussão

A varredura de emissão em fase sólida a temperatura ambiente se deu na faixa de 500 à 720nm com excitação sobre o ligante. Os espectros apresentaram as bandas características do íon Eu³⁺ ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ com J = 1,2,3 e 4, mostrado na figura 1. Os espectros de emissão apresentam apenas uma linha na transição ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$, que pode ser atribuída a existência de um único sítio de simetria em torno do íon Eu³⁺.

Figura 1. Espectros de emissão à 25 ℃.

Os valores de Ω_2 e Ω_4 obtidos (tabela 1) sugerem uma alta rigidez e um ambiente de alto grau de covalência em torno do íon Európio³. A otimização de geometria dos complexos foi feita usando o modelo "Sparkle". Os resultados teóricos foram obtidos através do software "MATHCAD" considerando os mecanismos de dipolo elétrico forçado e acoplamento dinâmico⁴. Os valores de Ω_2 e Ω_4 concordam bem com os resultados experimentais com erros abaixo de 0,8% para o Ω_2 .

Tabela 1: Parâmetros de Intensidade.

Compostos	$\Omega_{2(exp)}$	$\Omega_{2(teo)}$	$\Omega_{4(\text{exp})}$	$\Omega_{4(teo)}$
Eu-BTFA	22,7	22,8	1,6	1,2
Eu-PTA	24,6	24,4	1,8	1,3
Eu-TFAA	7,2	7,1	1,0	0,4

*Ω_λ (λ=2 e 4) estão em unidades de 10⁻²⁰ cm²

Em compostos com simetrias muito baixas, como neste caso, é de se esperar que o parâmetro Ω_4 seja menor que Ω_2 , pois nesses casos a dependência desses parâmetros com a distância metal-ligante é o fator determinante, e Ω_4 depende do inverso da distância elevada a potências bem mais altas que Ω_2 .

Conclusões

Os novos materiais foram caracterizados de forma satisfatória apresentando valores de Ω_{λ} que concordam com a literatura. Os modelos teóricos aplicados aos novos sistemas apresentam resultados plenamente satisfatórios quando comparados aos experimentais. Constituindo-se assim, em um método eficaz para projetar os chamados dispositivos moleculares conversores de luz.

Agradecimentos

Aos órgãos de fomento CNPq e FAPESB. A UFPE e ao Prof° Ricardo Freire (UFS).

¹Andrade, A. V. M., Costa Jr., N. B., Simas, A. M., Longo, R. L., Malta, O. L., Sá, G. F., *Quím. Nov.*, **1998**, 21 (1), , 51-59.

²Malta, O. L., Carlos, L. D., *Quím. Nov.*, **2006**, 26 (6), 889-895.
³Donega, C. M., Alves Junior, S., Sá, G.F. *Journal. of Alloys. and*

Compound, **1997**, 250, , 422-426.

⁴Malta, O.L, Ribeiro, S. J. L., Faucher , M., Porcher, P., *J. Phys.Chem. Sol.* **1991**, 52, 587.