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Abstract: An interesting feature of the next-to-minimal supersymmetric standard model

(NMSSM) is that one or more Higgs bosons may be comparably light (MHi
< MZ) without

being in conflict with current experimental bounds. Due to a large singlet component, their

direct production in standard channels at the Large Hadron Collider (LHC) is suppressed.

We demonstrate that there are good prospects for observing such a light Higgs boson

in decays of heavy neutralinos and charginos. We consider an example scenario with

20 GeV < MH1
< MZ and show that a large fraction of the cascade decays of gluinos and

squarks involves the production of at least one Higgs boson. Performing a Monte Carlo

analysis at the level of fast detector simulation, it is demonstrated how the Higgs signal

can be separated from the main backgrounds, giving access to the Yukawa coupling of

the Higgs to bottom quarks. Analyzing the resulting bb̄ mass spectrum could provide an

opportunity for light Higgs boson discovery already with 5 fb−1 of LHC data at 7 TeV.
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1 Introduction

The precise nature of the Higgs mechanism thought to be responsible for electroweak

symmetry breaking remains unknown. To discover and study the properties of one or

more Higgs bosons is therefore a challenge — and one of the major objectives — for the

experiments at the running Large Hadron Collider (LHC). Most of the Higgs boson search

strategies to date are designed to probe the Higgs sector of the Standard Model (SM), or

its minimal supersymmetric extension (MSSM) [1, 2].

There are several theoretically appealing arguments for weak-scale supersymmetry to

be realized in nature: it solves the hierarchy problem of the SM Higgs mass, it enables gauge

coupling unification, and with R-parity conservation it also provides a natural dark matter

candidate. On the other hand, the realization of weak-scale supersymmetry in terms of the

MSSM is not free of theoretical problems, such as the scale for the bilinear µ-parameter

entering the MSSM superpotential with positive mass dimension. This parameter has

no natural values besides MGUT or zero, while at the same time it must be close to the

electroweak scale for a phenomenologically acceptable theory. To solve this problem in an

elegant way the MSSM can be extended by a complex scalar singlet, giving the so-called

next-to-minimal supersymmetric model (NMSSM). In this model an effective µ-term of
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the right size can be generated dynamically from supersymmetry-breaking operators. For

a general introduction to the NMSSM we refer to the recent reviews [3, 4].

The NMSSM is characterized by an enlarged Higgs and neutralino sector as compared

to the MSSM, giving rise in particular to a richer Higgs phenomenology. While it is well

known that in certain scenarios of the MSSM with complex parameters a light Higgs, with

mass much below that of the Z boson, is unexcluded by the searches at LEP [5] and the

Tevatron [6] (see [7, 8] for recent reevaluations with improved theoretical predictions), such

a scenario can occur even more generically in the NMSSM. In order to be compatible with

the limits from the LEP Higgs searches, in particular the couplings of such a light Higgs

state to gauge bosons must be heavily suppressed. As a consequence of the presence of a

Higgs singlet, in the NMSSM such a situation happens whenever a light Higgs state has a

sufficiently large singlet component.

The search for a heavier Higgs state with SM-like (or only moderately suppressed)

couplings to gauge bosons is complicated in such a scenario by the fact that often the

decay of this heavier Higgs state into a pair of lighter Higgses is kinematically open, giving

rise to unusual decay signatures and to a large suppression of the standard search channels

for a SM-like Higgs. It should be noted in this context that the observation of a decay

of a heavier Higgs into a pair of lighter Higgses would provide an opportunity for gaining

experimental access to triple-Higgs couplings, which are a crucial ingredient of electroweak

symmetry breaking via the Higgs mechanism.

While in the NMSSM the case of a very light pseudo-scalar, MA1
< 2mb, has found

considerable attention in the literature, in particular in the context of “ideal” Higgs sce-

narios [9–14], we will focus in the following on scenarios with a light CP-even boson with

20 GeV < MH1
< MZ . Within the MSSM the best known example of a light Higgs

that is unexcluded by the present search limits is the “hole” in the coverage of the CPX

benchmark scenario [15] for MH1
≈ 45 GeV and moderate values of tan β [5], see [8] for

a detailed discussion of the dependence of the unexcluded parameter region on the choice

of the various MSSM parameters. It will be difficult to cover this parameter region with

the standard search channels at the LHC [16–18]. Various other (non-standard) search

channels have been proposed which may provide additional sensitivity in the quest to close

this “CPX hole” [16, 19–26].

In our analysis within the NMSSM we will investigate the prospects for the production

of light Higgs bosons in cascade decays of heavy SUSY particles at the LHC. Such an

analysis, where Higgs bosons are produced in association with — or in decays of — other

states of new physics, is necessarily more model-dependent than the Higgs search in SM-

like channels. On the other hand, investigating Higgs physics in conjunction with the

production of other states of new physics offers additional experimental opportunities and

may also be more realistic, in the sense that in order to extract a Higgs signal backgrounds

both from SM-type and new physics processes have to be considered. In the case of the

MSSM with real parameters, for a Higgs with a mass above the LEP limit for a SM Higgs

of 114.4 GeV [27], a detailed experimental study for Higgs boson production in a SUSY

cascade has been carried out by the CMS Collaboration [28], involving a full detector

simulation and event reconstruction. These results, obtained for the benchmark point
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LM5, cannot be directly translated to the case of searches for a Higgs boson with mass

far below MZ , since in the latter case the b jets resulting from the Higgs decay tend to be

softer. Further phenomenological analyses of Higgs production in SUSY cascades in the

MSSM with real parameters (and Higgs masses above the LEP limits) have been carried

out in [29–31], with recent developments focusing on jet substructure techniques to identify

highly boosted Higgs bosons and enhance the discovery significance [32, 33]. The case of

a lower mass Higgs has been considered in [23], and it has been pointed out that in the

CPX scenario there is a significant rate for producing a light MSSM Higgs boson in SUSY

cascades, but no simulation of signal and background events was performed. The potential

importance of SUSY cascades to establish a signal for a light CP-odd Higgs in the NMSSM

has been pointed out in [34].

We generalize and extend the investigations carried out in [23, 34] by calculating the

sparticle decay modes in a general NMSSM setting and performing a Monte Carlo simula-

tion of the signal and the dominant background to the level of fast detector simulation. A

simple cut-based analysis is performed to demonstrate that signal and background can be

resolved in the bb̄+jets channel. The observation of the Higgs decay in the bb̄ final state

would be of interest also as a direct manifestation of the Higgs Yukawa coupling.

The outline of our paper is as follows: the next section begins with a brief recapitulation

of the NMSSM, presenting the scenario with a light CP-even Higgs boson in some detail.

In section 3, we describe the production of squarks and gluinos at the LHC and their

eventual decay into Higgs bosons through electroweak cascades involving neutralinos and

charginos. Section 4 describes a phenomenological Monte Carlo analysis of these cascade

processes and contains the main results of this work in terms of kinematic distributions

demonstrating the separation of signal and background. The conclusions are presented in

section 5.

2 The Next-to-Minimal Supersymmetric Standard Model

In this section we review briefly the elements of the NMSSM which differ from the MSSM.

Our conventions for the other sectors — that remain unchanged when going to the NMSSM

— follow those of [35, 36].

2.1 The Higgs sector

The Z3-symmetric version of the NMSSM is given by the scale-invariant superpotential

WNMSSM = YuQ̂L ·HuÛ
c
L + YdQ̂L ·HdD̂

c
L + YeL̂L ·HdÊ

c
L + λŜĤu · Ĥd +

1

3
κŜ3, (2.1)

where Φ̂ denotes a chiral superfield with scalar component Φ. The complex gauge singlet Ŝ

is a new addition with respect to the MSSM. To have a complete phenomenological model

the soft SUSY-breaking terms must also be specified. These are extended by couplings of

the singlet field, giving new contributions to the scalar potential

V NMSSM = V MSSM +m2
SS

2 + λAλSHu ·Hd +
1

3
κAκS

3. (2.2)

– 3 –



The NMSSM Higgs potential, which is derived from the usual F -terms, D-terms and the

soft-breaking potential given by Equation (2.2), allows for a minimum where the singlet

develops a vacuum expectation value (vev) vs = 〈S〉. This induces an effective bilinear

term λ 〈S〉Hu · Hd, thus providing a dynamical explanation for the µ parameter of the

MSSM in terms of µeff = λvs.

Electroweak symmetry breaking (EWSB) proceeds similarly to the MSSM, and the

two Higgs doublets are expanded around the potential minimum according to

Hd =

(

vd +
1√
2
(φd − iσd)

−φ−d

)

, Hu =

(

φ+u
vu +

1√
2
(φu + iσu)

)

. (2.3)

Equivalently, the singlet field has an expansion

S = vs +
1√
2
(φs + iσs) . (2.4)

Using the minimization conditions for the potential, the scalar mass parameters m2
Hu

, m2
Hd

,

and m2
S can be traded for

M2
Z = g2v2 =

1

2

(

g21 + g22
)

v2,

tan β = vu/vd,

µeff = λvs,

where the doublet vevs fulfill v2 ≡ v2u + v2d = (174 GeV)2. Assuming a CP-invariant Higgs

sector, all parameters are taken to be real. The number of parameters is increased from

the MSSM. In addition to MA (or MH±), and tan β, the values of λ, κ, and Aκ can be

chosen as free parameters.

After EWSB, the addition of a complex scalar field gives rise to additional particles

in the NMSSM spectrum with respect to the MSSM: two additional Higgs bosons (one

of which is CP-even, the other CP-odd) and their fermionic partner, the singlino. The

elements of the tree-level mass matrix M2
H for the CP-even Higgs bosons are given in the

basis (φd, φu, φs) by

(

M2
H

)

11
=M2

Z cos2 β +Bµeff tan β,
(

M2
H

)

22
=M2

Z sin2 β +Bµeff cot β,

(

M2
H

)

33
=
λv2Aλ

vs
cosβ sin β + κvs (Aκ + 4κvs) ,

(

M2
H

)

12
=
(

2λ2v2 −M2
Z

)

cos β sinβ −Bµeff ,
(

M2
H

)

13
= λv [2µeff cos β − (B + κvs) sin β] ,

(

M2
H

)

23
= λv [2µeff sin β − (B + κvs) cos β] ,

(2.5)

where B ≡ Aλ+κvs. This matrix is diagonalized by a real 3× 3 matrix with elements Sij,

such that the Higgs mass eigenstates Hi are given by Hi = Sijφj . For the CP-odd states,

– 4 –



the mass matrix elements in the basis (σd, σu, σs) can be written
(

M2
A

)

11
= Bµeff tan β,

(

M2
A

)

22
= Bµeff cot β,

(

M2
A

)

33
=
λv2

vs
(B + 3κvs) cos β sin β − 3κAκvs,

(

M2
A

)

12
= Bµeff ,

(

M2
A

)

13
= λv (B − 3κvs) sinβ,

(

M2
A

)

23
= λv (B − 3κvs) cos β.

(2.6)

Similarly to the CP-even case, the massive eigenstates Ai can be written using a mixing

matrix Pij as Ai = Pijσj. One degree of freedom is massless and corresponds to the neutral

Goldstone boson providing the longitudinal degree of freedom to the Z boson. For some

purposes it can be convenient to introduce the CP-odd mass parameter

M2
A =

Bµeff
cβsβ

, (2.7)

which corresponds to the mass of the CP-odd Higgs boson in the MSSM limit of the

NMSSM.1

No additional charged scalar is introduced in the NMSSM, but the relation of the

physical charged Higgs boson mass to the CP-odd mass parameter gets modified. At

tree-level the charged Higgs mass is now given by

M2
H± =M2

A +M2
W − λ2v2. (2.8)

2.2 The neutralino sector

As a result of introducing the new singlet superfield Ŝ, the NMSSM comes with an addi-

tional fermion partner of the complex scalar S, the singlino. The singlino mixes with the

existing four neutralinos of the MSSM. The resulting 5 × 5 mass matrix derives from the

bilinear terms

L = −1

2
(ψ̃0)TMχ̃0ψ̃0 + h.c., (2.9)

and in the basis (−iB̃,−iW̃ , H̃d, H̃u, S̃) it is given by

Mχ̃0 =

















M1 0 − g1vd√
2

g1vu√
2

0

0 M2
g2vd√

2
− g2vu√

2
0

− g1vd√
2

g2vd√
2

0 −µeff −λvu
g1vu√

2
− g2vu√

2
−µeff 0 −λvd

0 0 −λvu −λvd 2κvs

















. (2.10)

The upper left 4 × 4 submatrix is identical to the neutralino mass matrix in the MSSM.

The neutralino masses can be diagonalized by a single unitary matrix N such that

D = diag(mχ̃0
i
) = N∗Mχ̃0N † (2.11)

1The MSSM limit is obtained by taking λ → 0, κ → 0, while keeping the ratio κ/λ and all dimensionful

parameters fixed.
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is real and positive with the neutralino mass eigenvalues in ascending order. Alternatively

one can use a real mixing matrix N , and allow D to have negative elements. In this case

the physical neutralino masses are given by |mχ̃0
i
| and the neutralino couplings incorporate

the additional phase shift on the neutralino fields.

2.3 The squark sector

We adopt a universal value MSUSY for the soft SUSY-breaking scalar mass parameters.

This means that, for each squark pair q̃L, q̃R of a given flavour, the mass matrix attains

the form

M2
q̃ =

(

M2
SUSY +m2

q +M2
Z cos 2β(Iq3 −Qqs

2
W ) mqXq

mqXq M2
SUSY +m2

q +M2
Z cos 2βQqs

2
W

)

.

(2.12)

Heremq is the mass of the corresponding quark, Iq3 the third component of the weak isospin,

and Qq the electric charge quantum number. For the weak mixing angle we introduce the

short-hand notations sW ≡ sin θW and cW ≡ cos θW . The off-diagonal elements of M2
q̃ are

related to the soft trilinear couplings Aq as Xq = Aq − µeff cot β for up-type squarks, and

Xq = Aq − µeff tan β for the case of down-type squarks, respectively. The mass eigenstates

(q̃1, q̃2) are obtained by a diagonalization of the mass matrix. A generic squark mass will

be denoted Mq̃ below.

2.4 Scenarios with light Higgs bosons

As mentioned above, we will focus in the following on the case where the lightest CP-even

Higgs boson of the NMSSM, H1, has a mass much below MZ . The fact that such a light

Higgs, possessing a heavily suppressed coupling to gauge bosons as compared to the Higgs

boson of the SM, may be unexcluded by the current search limits is known already from

the case of the MSSM with complex parameters [5, 7, 8]. In the NMSSM such a situation

happens more generically, in particular also for the case where the SUSY parameters are

real. If the mass eigenstate H1 has a large component of the singlet interaction state φs,

its couplings to gauge bosons (and also to quarks) will be correspondingly suppressed. We

will investigate the prospects for detecting such a light Higgs state through its production

in SUSY cascades.

In the numerical analysis, we shall use a scenario derived from the “P4” benchmark

point defined in [37]. This benchmark can be realized in models with non-universal Higgs

mass parameters (mHu 6= mHd
) at the scale of grand unification, and it is compatible with

the data on the cold dark matter density. As originally defined, the P4 benchmark contains

a very light CP-even Higgs boson (MH1
= 32.3 GeV). In order to explore the full range

MH1
< MZ , we slightly modify the scenario to allow changing the value of MH1

, with the

remaining phenomenology essentially unchanged. To this end we set λ = 0.6 and allow

Aκ to take on values in the range 0 GeV < Aκ < 300 GeV.2 The soft SUSY-breaking

parameters are defined directly at the SUSY-breaking scale, allowing us to consider a more

2The original P4 benchmark point is recovered for λ = 0.53 and Aκ = 220 GeV.
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Higgs sector parameters

λ 0.6 κ 0.12

tan β 2.6 µeff −200 GeV

Aλ −510 GeV Aκ 0 – 300 GeV

Gaugino masses

M1 300 GeV M2 600 GeV

M3 1000 GeV

Trilinear couplings

At = Ab = Aτ = 0 GeV

Soft scalar mass

MSUSY = 750 GeV, 1 TeV

Table 1. Values for the NMSSM input parameters at the SUSY-breaking scale in the modified P4

scenario.
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Figure 1. Higgs mass spectrum for the modified P4 scenario with MSUSY = 750 GeV as a function

of the free parameter Aκ. For Aκ & 250 GeV (dashed) the electroweak symmetry remains unbroken

in the global minimum.

general spectrum for the remaining (non-Higgs) sectors of the theory. Values for the tree-

level parameters in the Higgs sector and the soft SUSY-breaking parameters in the modified

P4 scenario are specified in table 1. The two values given for MSUSY will be used later in

the phenomenological analysis, while the values quoted in this and the next section (unless

otherwise stated) have been evaluated for MSUSY = 750 GeV.

The NMSSM Higgs masses are subject to sizable corrections beyond leading order

[38–43]. In order to incorporate the most accurate predictions currently available [44],

NMSSMTools 2.3.5 [45–47] is used to compute the Higgs spectrum. The resulting Higgs

masses in the modified P4 scenario are shown in figure 1 as a function of the free parameter

Aκ. In the region with Aκ & 250 GeV the global minimum of the Higgs potential does

not break the electroweak symmetry; hence these values will not be considered. The

masses of two Higgs bosons show a dependence on Aκ: the lightest CP-even Higgs H1

(MH1
varying from about 110 GeV to 20 GeV), and the lightest CP-odd Higgs A1 (with

MA1
going from about 90 GeV to 200 GeV). H2 is always SM-like and has a mass of

about MH2
= 115 GeV (118 GeV for MSUSY = 1 TeV). For all Higgs masses in this
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Figure 2. Branching ratios of H1 (upper left), H2 (upper right), and A1 (lower) in the modified

P4 scenario with MSUSY = 750 GeV.

plot the NMSSM scenario is compatible with the direct limits from Higgs searches. The

light CP-even Higgs (MH1
≪MZ) is allowed due to a large singlet component, with |S13|2

ranging from 0.9 for Aκ = 0 GeV to |S13|2 > 0.99 for Aκ = 250 GeV. As a consequence,

the couplings of H1 to vector bosons are heavily suppressed, so that the cross section for

production through Higgsstrahlung drops below the LEP limit. The pair production of

A1H1 is even further suppressed by the large singlet fractions of both H1 and A1, while

production of H2A1 and H2Z are beyond the kinematic reach of LEP. The full mass ranges

shown in the figure are also compatible with the constraints from B-physics implemented

in NMSSMTools 2.3.5 [45–47], as expected when the charged Higgs boson is heavy [48, 49].

The precise values obtained here for the heavy Higgs masses are MH± ≃ 563 GeV, and

MH3
≃MA2

≃ 572 GeV. None of the heavy Higgs bosons will play any role in the following.

With the negative sign for the effective µ parameter, this model cannot be used to explain

the observed deviation in the anomalous magnetic moment of the muon (see e.g. [50] for

a review). However — since the considered value of tan β is rather low — the predicted

value for (g − 2)µ at least stays close to that in the SM.

The branching ratios of the three lightest Higgs states, H1, H2, and A1, are given

in figure 2. As can be seen from this figure, the light singlet H1 decays preferentially into

bb̄, with BR(H1 → bb̄) ≃ 90% over the full mass range. The subdominant decay into

ττ basically saturates the H1 width. For lower values of Aκ — where MH1
& 90 GeV

— we note a similar enhancement of BR(H1 → γγ) compared to a SM Higgs with the
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same mass as recently discussed in [51]. The H2 has a more complicated decay pattern, in

particular for low Aκ where H2 → bb̄ dominates and several competing modes (H2 → ττ ,

gg, WW ) each have a branching fraction around 10%. In this region H2 is SM-like, and the

same search strategies as devised for the SM Higgs (and the lightest MSSM Higgs boson

in the decoupling limit) should apply. This situation changes radically when the channel

H2 → H1H1 opens. When this is the case, the H2 → H1H1 mode becomes completely

dominant. Finally, the lightest CP-odd Higgs A1 decays predominantly into bb̄, with a

large fraction going into the mode A1 → H1Z when kinematically accessible.

In the neutralino sector the mass spectrum is independent of Aκ (andMSUSY) at lowest

order, cf. equation (2.10), and therefore remains fixed at:

Mχ̃0
1
= 97.6 GeV, Mχ̃0

2
= 227 GeV, Mχ̃0

3
= 228 GeV

Mχ̃0
4
= 304 GeV, Mχ̃0

5
= 616 GeV.

There is a clear hierarchy in the mass parameters, which leads to a small mixing between

the neutralinos. The heaviest neutralino is almost exclusively wino, and χ̃0
4 is mostly

bino. The intermediate mass states χ̃0
2, and χ̃0

3 are predominantly Higgsino, while the

lightest neutralino χ̃0
1 is the singlino. The lightest neutralino is also the overall lightest

supersymmetric particle (LSP) in these scenarios and thereby a candidate for cold dark

matter.

3 Higgs production in the light H1 scenario

3.1 Standard channels

The rate for direct production of a light singlet H1 in gluon fusion, gg → H1, is proportional

to its reduced (squared) coupling to quarks. Compared to a SM Higgs boson with the same

mass, the dominant top loop contribution contains the additional factor |S12|2/ sin2 β. The
size of |S12|2 is limited from above by |S12|2 ≤ 1−|S13|2, where S13 is the singlet component.

For MH1
≪ MZ , where |S13| → 1, the rate for this process gets heavily suppressed. The

cross section for H1 in weak boson fusion, involving the coupling of H1 to gauge bosons,

is similarly suppressed. In scenarios where MH1
> MZ (corresponding to the mass range

below the LEP limit on a SM-like Higgs which is unexcluded in the MSSM with real

parameters) the suppression of gg → H1 can be overcome by an increased branching ratio

for H1 → γγ [51].

For Aκ & 200 GeV in the modified P4 scenario, H1 is light enough to be produced

through the decay of the SM-like H2 → H1H1, which can be dominant, see figure 2. The

production of H2 in standard channels is not suppressed. The resulting two-step decay

chain leads to “unusual” final states for H2: 4b (about 82% of all decays), 2b2τ (17%), and

4τ (0.6%). These final states make it difficult to establish a Higgs signal, as it has been

demonstrated, for instance, by the numerous attempts [52–56] to establish a “no-loose”

theorem for NMSSM Higgs searches when decays of the SM-like Higgs into lighter Higgses

are open.
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Another possibility to produce H1 in Higgs decays would be through the decay A1 →
H1Z. However, the singlet nature of A1 in the modified P4 scenario leads to a suppression of

A1 production similar to that for H1, and this mode is therefore not likely to be accessible.

The direct production of the heavy Higgs bosons H3, A2, and H
± is in principle not

suppressed with respect to the MSSM case, but at a mass close to 600 GeV and low tan β

the observation of those states at the LHC will be difficult even at high luminosity. A large

fraction of the heavy Higgs bosons in this scenario will decay into lighter Higgs bosons,

neutralinos and charginos. A detailed investigation of these channels could possibly be of

interest for a study assuming a very high luminosity at 14 TeV, but is beyond the scope of

the present paper.

In summary, it will be problematic to produce and reconstruct the light H1 in any of

the standard channels proposed for Higgs production at the LHC. We shall focus instead

on the possibility to produce H1 in the decays of supersymmetric particles.

3.2 SUSY cascades

As discussed in the previous section, inclusive production of the heavier state H2 with

subsequent decay H2 → H1H1 may be difficult to observe at the LHC. However, the

related process where a heavier neutralino decays into a lighter neutralino and a Higgs

boson (and the corresponding mode of the decay of the heavier chargino) may offer better

prospects. In fact, a light Higgs boson in the mass range below MZ may occur in a

large fraction of cascade decays of heavier SUSY particles that are produced via strong

interaction processes. The hard scale associated with the sparticle production can lead to

event signatures which are more clearly separable from the SM backgrounds than those of

inclusive Higgs production followed by a decay into a pair of H1 states. The processes of

interest are

χ̃0
i → χ̃0

jHk, χ̃0
i → χ̃0

jAk, (3.1)

χ̃±
2 → χ̃±

1 Hk, χ̃±
2 → χ̃±

1 Ak, (3.2)

where Hk (Ak) denotes any of the CP-even (CP-odd) Higgs bosons. As mentioned above

we do not consider scenarios where the heavier H± is produced in the cascades. The partial

width for the neutralino decay (3.1) is given at tree-level by

Γ(χ̃0
i → χ̃0

jHk) =
|Sijk|2
16πm3

χ̃0
i

τ1/2(m2
χ̃0
i
,m2

χ̃0
j
,m2

Hk
)
(

m2
χ̃0
i
+m2

χ̃0
j
−m2

Hk
+ 2mχ̃0

i
mχ̃0

j

)

, (3.3)

with a CP-even Higgs in the final state and

Γ(χ̃0
i → χ̃0

jAk) =
|Pijk|2
16πm3

χ̃0
i

τ1/2(m2
χ̃0
i
,m2

χ̃0
j
,m2

Ak
)
(

m2
χ̃0
i
+m2

χ̃0
j
−m2

Ak
− 2mχ̃0

i
mχ̃0

j

)

(3.4)

for the decay into a CP-odd scalar. The Källén function τ(x, y, z) = (x − y − z)2 − 4yz,

and the coupling factors are

Sijk =
e

2cW sW

[

(Sk1Ni3 − Sk2Ni4) (cWNj2 − sWNj1)
]

−

λ√
2

[

Ni5 (Sk1Nj4 + Sk2Nj3) + Sk3Ni4Nj3

]

+
κ√
2
Sk3Ni5Nj5 + i↔ j,

(3.5)
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and

−iPijk =
e

2cW sW

[

(Pk1Ni3 − Pk2Ni4) (cWNj2 − sWNj1)
]

+

λ√
2

[

Ni5 (Pk1Nj4 + Pk2Nj3) + Pk3Ni4Nj3

]

− κ√
2
Pk3Ni5Nj5 + i↔ j,

(3.6)

where the mixing matrices Sij, Pij , and Nij are defined in section 2.1. Equations (3.3)–

(3.6) assume a real neutralino mixing matrix Nij and signed neutralino masses. Competing

neutralino decay modes are into vector bosons, χ̃0
i → χ̃0

jZ and χ̃0
i → χ̃±

j W
∓. For brevity

we refrain from giving expressions for these (and the corresponding chargino decay modes)

here; they can be found in [57]. A detailed analysis of the W± mode is performed in [58].

Since the squarks and sleptons are assumed to be heavy, there are no open two-body decay

modes of the neutralinos into the sfermion sector. Also slepton-mediated three-body decays

— which can dominate over the two-body decays in certain scenarios — are numerically

irrelevant for the same reason.

The branching fractions for the relevant decay channels have been computed at leading

order using FeynArts/FormCalc [59, 60] and a purpose-built Fortran code.3 Results for the

neutralino branching ratios in the modified P4 scenario are shown in figure 3. The decay

modes of χ̃0
2 and χ̃

0
3 (upper row of figure 3) — which are both Higgsino-like — show similar

patterns for large values of Aκ. The dominant mode is always χ̃0
i → χ̃0

1Z with a branching

ratio of about 50%, but the Higgs channels are also significant with BR(χ̃0
i → χ̃0

1H1) & 0.3

and BR(χ̃0
i → χ̃0

1H2) ∼ 0.15. An important point to note here is that the branching ratios

of χ̃0
2 and χ̃0

3 are quite insensitive to changes in MH1
(Aκ). For the heavier neutralinos,

χ̃0
4 and χ̃0

5 (lower row of figure 3), which also carry a larger gaugino fraction, the decay

pattern is more complicated. Of largest interest for Higgs production is the sizable rate for

χ̃0
4 → χ̃0

3H1 (once Aκ is sufficiently large to make this decay mode kinematically possible),

and the fact that direct decays of χ̃0
5 to the LSP are suppressed. This will lead to neutralino

decay chains with intermediate (Higgsino) steps. Everything taken together, we can expect

a large number of light Higgs bosons to be produced in neutralino cascade decays.

The light chargino χ̃±
1 decays exclusively into the LSP and a W boson, while the

corresponding decay channels for the heavier chargino χ±
2 are shown in figure 4. Even if

the dominant mode is χ̃±
2 → χ̃±

1 W
∓, independently of Aκ, there are several channels with

a branching fraction of order 20% of interest for Higgs production. These include the mode

χ̃±
2 → χ̃±

1 H2 and the decays into intermediate-mass Higgsinos, χ̃±
2 → χ̃0

2,3W
±.

The heavier neutralinos and the heavy chargino, from which a Higgs could emerge as

decay product, can either be produced at the LHC directly or in the decay of a heavier

SUSY particle. The cross section for direct production of neutralino pairs is small, only

O(fb) at
√
s = 14 TeV, and the reach in these channels will be rather limited even for

high luminosity. The large cross sections for production of strongly interacting sparticles

(squarks and gluinos), on the other hand, are potentially more promising as a source of the

heavier neutralino states and the heavier chargino. Exploiting cascade decays of this kind

3A FeynArts model file for the NMSSM has been obtained using FeynRules [61] and SARAH [62]. Details

on this implementation will be presented elsewhere.
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Figure 3. Branching ratios in the modified P4 scenario for χ̃0
i → χ̃0

jZ (solid), χ̃0
i → χ̃0

jH1

(dashed), χ̃0
i → χ̃0

jH2 (dotted), and χ̃0
i → χ̃0

jA1 (dot-dashed). The color coding indicates the final

state neutralino j = 1 (black), j = 2 (blue), j = 3 (magenta), j = 4 (green), or the chargino mode

χ̃0
i → χ̃±

1
W∓ (red).
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Figure 4. Branching ratios of χ̃±
2
in the modified P4 scenario. Neutralino final states χ̃±

2
→ χ̃0

iW
±

(solid) are shown with the same color coding as for figure 3. Modes with a final state χ̃±
1
are shown

in red: χ̃±
2
→ χ̃±

1
Z (solid), χ̃±

2
→ χ̃±

1
H1 (dashed), χ̃

±
2
→ χ̃±

1
H2 (dotted), χ̃

±
2
→ χ̃±

1
A1 (dot-dashed).

furthermore has the advantage that additional high-pT jets are produced, which facilitates

triggering and event selection.

We use Prospino to calculate the NLO cross sections for production of pp → g̃g̃,

pp → q̃q̃, pp → q̃ ˜̄q, and pp → g̃q̃ according to [63], with CTEQ6 [64] parton distributions

and a common choice of renormalization and factorization scales as the average mass of the

final state (SUSY) particles. Numerical results are given in table 2 for the two centre-of-
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Masses (GeV) σLO (pb) σNLO (pb)

Mg̃ Mq̃ g̃g̃ q̃q̃ g̃q̃ q̃ ˜̄q Σ g̃g̃ q̃q̃ g̃q̃ q̃ ˜̄q Σ√
s = 7 TeV

750 750 0.03 0.23 0.25 0.05 0.56 0.07 0.27 0.39 0.08 0.82

1000 750 0.002 0.19 0.06 0.05 0.31 0.006 0.21 0.10 0.07 0.39

1000 1000 0.001 0.03 0.02 0.004 0.06 0.005 0.04 0.04 0.006 0.08√
s = 14 TeV

750 750 1.18 1.67 5.20 1.06 9.11 2.21 2.06 6.78 1.53 12.6

1000 750 0.15 1.41 1.86 0.96 4.38 0.32 1.59 2.44 1.34 5.69

1000 1000 0.14 0.42 0.87 0.18 1.61 0.31 0.51 1.19 0.26 2.27

1500 1500 0.01 0.04 0.05 0.01 0.10 0.01 0.05 0.07 0.02 0.15

Table 2. Total production cross sections for pp → g̃g̃, pp → q̃q̃, pp → g̃q̃, and pp → q̃ ˜̄q at LO

and NLO SUSY-QCD from Prospino. The squark cross sections are summed over the four “light”

squark flavours. No kinematic cuts have been applied here.

mass energies 7 TeV and 14 TeV. The cross sections for pp→ t̃˜̄t and pp→ b̃˜̄b [65] are also

calculated and included in the analysis, but since they turn out to be significantly smaller

than σ(pp → q̃ ˜̄q) they are not shown in the table. In order to give some indication of the

expected change in the number of events for different scenarios, the results are presented

for several values of the squark masses, Mq̃, and the gluino mass, Mg̃. The mass ranges are

selected to respect the published limits from ATLAS [66–70] and CMS [71–74] based on

the 2010 data. Taking into account also the most recent results [75, 76], theMq̃ = 750 GeV

case appears to be under some pressure. We present the results of our analysis below for

the two cases MSUSY = 750 GeV and MSUSY = 1 TeV (the leading order squark masses

are obtained from MSUSY through eq. (2.12), to which higher order corrections are then

added).

The nearly mass-degenerate squarks decay preferentially into the SUSY-EW sector.

Direct decays into Higgs bosons (or Higgsinos) are negligible for squarks of the first two

generations due to the small Yukawa couplings. In contrast to the MSSM, the neutralinos

also have a singlino component to which no squark couples. The left-handed squarks decay

mainly into the wino, q̃L → W̃ 0q, q̃L → W̃±q′, while the right-handed squarks decay mostly

to the bino, q̃R → B̃q. Numerically, this leads to squark decay modes listed in table 3 for

the case with a soft scalar mass of MSUSY = 750 GeV. The squark decay pattern for

MSUSY = 1 TeV is qualitatively similar.4 Since the gaugino components are largest in the

two heaviest neutralinos, the neutralinos produced in the squark decays tend to give rise

to cascade decays with several steps.

Finally, we note that the gluinos decay ‘democratically’ through g̃ → q̃q̄ into all

flavours, with rates governed only by the available phase space.

4The main numerical difference is an increase of BR(ũL → q′χ̃±

2
) to 60% at the expense of a reduced

BR(ũL → q′χ̃±

1
) = 3.9× 10−2.
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Final state ũL ũR d̃L d̃R
q̃ → qχ̃0

1 2.9× 10−3 2.6× 10−3 6.3 × 10−3 2.6 × 10−3

q̃ → qχ̃0
2 8.1× 10−3 5.4× 10−3 1.6 × 10−2 5.4 × 10−3

q̃ → qχ̃0
3 1.9× 10−3 4.5× 10−2 2.0 × 10−2 4.6 × 10−2

q̃ → qχ̃0
4 6.6× 10−2 0.95 2.9 × 10−2 0.95

q̃ → qχ̃0
5 0.29 – 0.32 –

q̃ → q′χ̃±
1 9.6× 10−2 – 3.3 × 10−4 –

q̃ → q′χ̃±
2 0.54 – 0.61 –

Table 3. Branching ratios for the first and second generation squarks into neutralinos and charginos

in the modified P4 scenario with MSUSY = 750 GeV. Results for channels with a branching ratio

below 10−4 are not shown.

4 LHC analysis

In order to assess whether the process discussed in the previous section can be useful as a

Higgs search channel at the LHC we perform a Monte Carlo simulation. Here we use as

benchmark the modified P4 scenario with the two different settings for the soft scalar mass:

MSUSY = 750 GeV and MSUSY = 1 TeV. The DR value of the gluino mass parameter is

set to M3 = 1 TeV. We select Aκ such that MH1
≃ 40 GeV, which also affects MH2

, MA1

and the branching ratios in the two cases as discussed in section 3. We have chosen this

value of MH1
as an illustrative example of our scenario with 20 GeV < MH1

< MZ and

in order to make contact with the analyses of the “CPX hole” in the MSSM with complex

parameters. Our results however depend only very mildly on the specific choice for MH1
.

The simulation results are presented below both for LHC running at centre-of-mass energies

of 7 TeV and 14 TeV.

The squark and gluino-induced cascades in general give rise to a final state with high

multiplicities and several hard jets, as well as large missing transverse momentum due to

the presence of the LSP at the end of each decay chain. The minimal signal cascades

(defined to be those with at least one Higgs boson present) generated by the production of

a single squark or gluino correspond to

q̃ → qχ̃0
i → qχ̃0

1Hk → qχ̃0
1bb̄, nj ≥ 1, nb ≥ 2, (14 a)

g̃ → gq̃ → gqχ̃0
i → gqχ̃0

1Hk → gqχ̃0
1bb̄, nj ≥ 2, nb ≥ 2. (14 b)

Equations (14 a) and (14 b) show the minimum number of light and heavy flavour (b-) jets

expected in the signal. Each event contains production of a pair of sparticles and their

associated jets, meaning that the full signature for production of at least one H1 in the

hadronic final state will be nj ≥ 2, nb ≥ 2. Since direct decays of the heavier (mainly

gaugino) neutralinos into the singlino LSP are practically absent (cf. figure 3), most signal

cascades will contain an intermediate Higgsino step which will add further particles in the

final state. The typical jet multiplicity will also be higher due to additional QCD activity,

in particular for gluon-initiated processes.
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4.1 Event Generation

For the event generation, we use MadGraph/MadEvent 4.4.44 [77] to calculate the leading

order matrix elements for pp→ g̃g̃, q̃q̃, g̃q̃, q̃ ˜̄q, t̃˜̄t, and b̃˜̄b. The different event categories are

weighted by the corresponding NLO cross sections to produce an inclusive SUSY sample.

The resonance decay chains are then generated with PYTHIA 6.4 [78] using the NMSSM

decay rates calculated above as input through the SUSY Les Houches accord [36]. The

PYTHIA generator is also used to produce additional QCD radiation through initial- and final

state parton showers, for parton fragmentation, and to generate multiple interactions for the

underlying event. This produces fully dressed hadronic events which are passed through the

fast simulation of the ATLAS detector performance implemented in the Delphes package

[79].5 Hadronic jets are clustered using the anti-kT algorithm [80] with a jet radius measure

of R = 0.4.

Since for the lightest Higgs boson the decay to bb̄ is favored, the probability ηb to

correctly identify jets originating from bottom partons (b-tagging efficiency) becomes a

crucial quantity for the analysis. Based on [81] we parametrize this efficiency as a constant

ηb = 0.6 with respect to both the detector geometry and the jet energy scale. Only jets in

the central tracking region |η| < 2.5 can be tagged. The rate for misidentification as a b-jet

is assumed to be ηc = 0.1 for charm jets, and ηq = 0.01 for jets produced by light quarks

and gluons. The actual tagging algorithm implemented in the Delphes simulation is not

based on a particular experimental method to identify b-jets. The algorithm determines if

a jet is close enough in ∆R to a “true” b parton. When this is the case, the efficiencies

given above are applied to determine if the tagging is successful or not.

4.2 Backgrounds

Based on the event signature, SM production of tt̄ with at least one hadronically decaying

W boson (or additional jet activity) constitutes an irreducible background to the Higgs

signal. We can a priori expect this to be the most important SM background since the

scale for the SUSY-QCD processes is high (> 1 TeV). In principle there are other sources

of background from production ofW +jets (bb̄), Z+jets (bb̄), direct production of bb̄+jets,

or from QCD multijets. The cross sections for these processes are large compared to

the signal cross section, with QCD multijets the largest and thereby potentially the most

serious. However, for QCD jet production to constitute a background to the Higgs signal

simultaneously a double misidentification of heavy flavour jets and a large mismeasurement

of the missing transverse energy is required. It is furthermore difficult to simulate this

background reliably, since extreme kinematical fluctuations — or experimental effects —

would be necessary to produce the signal-like events. A detailed study of the experimental

effects would require a full detector simulation, which is beyond the scope of the present

paper. However, the dominance of the tt̄ background over other SM processes, such as

W + jets or Z + jets, for our final state has also been demonstrated experimentally by the

results from SUSY searches with b-jets and missing ET [68]. We therefore proceed under

5Running the same Delphes analysis with the “CMS” detector setup and similar parameters for jets and

heavy flavour tagging, no significant differences are observed in the output.

– 15 –



10−1

10−2

10−3

0 200 400 600 800 1000 1200 1400
pT (GeV) of hardest jet

√
s = 7 TeV

10−1

10−2

10−3

0 200 400 600 800 1000 1200 1400
pT (GeV) of hardest jet

√
s = 14 TeV

Figure 5. Transverse momentum distribution of the hardest (non-b) jet at 7 TeV (left) and 14 TeV

(right) for the inclusive SUSY sample with MSUSY = 750 GeV(dashed) and SM tt̄ background

(solid). The histograms are normalized to unity.

the assumption that the cuts devised to suppress the irreducible tt̄ background will also be

efficient for suppressing the other SM backgrounds as well.

For the normalization of the tt̄ background we use the NLO cross section σ(pp →
tt̄) = 902 pb (

√
s = 14 TeV) and σ(pp → tt̄) = 162 pb (

√
s = 7 TeV), computed with

the HATHOR package [82] for mt = 173.3 GeV and MSTW2008 PDFs [83]. In this way a

consistent NLO normalization is used for both the signal and background events. The tt̄

background is generated in the same Monte Carlo framework as already described for the

signal.

In addition to the SM backgrounds, the process we are interested in receives an im-

portant background from the SUSY cascade itself. Any final state containing two b-jets

which do not result from an intermediate Higgs boson contributes to this background.

Attempting to suppress the SUSY background events would require additional cuts that

depend on the kinematics of the decay chains. This is something which may indeed be

possible to devise once information on the supersymmetric spectrum has become available,

but since we do not want to make any particular assumptions on the pattern of the SUSY

spectrum, no selection will be applied aiming to reduce the SUSY background. Instead we

will consider the inclusive bb̄ mass spectrum directly after applying the cuts designed to

reduce the SM background to determine if a Higgs signal can be extracted.

4.3 Event Selection

As a first step, we perform a preselection of the expected event topology, demanding nj ≥ 2,

nb ≥ 2. All reconstructed jets are required to have a minimum pT ≥ 25 GeV.

Figure 5 shows the pT distribution for the hardest jet in each event, comparing the

inclusive SUSY events (withMSUSY = 750 GeV) to the tt̄ background. We show the results

for the two cases
√
s = 7 TeV (left) and

√
s = 14 TeV (right). In order to illustrate the

effect of applying cuts to this variable, each histogram is normalized to unity. From figure 5

it is clear that the leading jet from the SUSY events has a much harder scale compared to

the tt̄ events. This can be understood as a result of the large boost obtained by the light
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Figure 6. Transverse momentum distribution of the second hardest jet at 7 TeV (left) and 14 TeV

(right) for the inclusive SUSY sample with MSUSY = 750 GeV (dashed) and SM tt̄ background

(solid). The histograms are normalized to unity.
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Figure 7. Missing transverse energy at 7 TeV (left) and 14 TeV (right) for the inclusive SUSY

sample (dashed) and SM tt̄ background (solid). The histograms are normalized to unity.

quark jets originating from squark decays. It can also be seen that there is only a minor

scaling difference in the jet pT distribution between the 7 TeV and 14 TeV cases. The

same is true for the second hardest (light) jet, for which the corresponding pT distribution

is shown in figure 6. Similar differences between signal and background can be observed

also for the third and fourth jet when they are present.

With each cascade ending in the stable LSP, a large missing transverse energy /ET

is expected for the signal events. This distribution is displayed in figure 7, and shows

indeed that the SUSY distribution peaks at high /ET values (& 200 GeV). This is therefore

an important discriminating variable to suppress the background from tt̄ events, where

the missing transverse energy is due to neutrinos from leptonic W decays. As already

mentioned, a hard cut on /ET is also necessary to suppress the background from ordinary

QCD multijet events and direct production of bb̄. A further advantage of the large /ET is

that it can be used for triggering.

The final kinematical distribution we are going to consider is displayed in figure 8. It
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Figure 8. Distribution in ∆R(bb̄) at 7 TeV (left) and 14 TeV (right) for the inclusive SUSY

sample (dashed) and SM tt̄ background (solid). The histograms are normalized to unity. In events

containing more than two b-jets, all possible combinations have been included.

MSUSY = 750 GeV Incl. SUSY Signal Background

Generated events 18 465 8 261 10 195

nj ≥ 2, nb ≥ 2 4 048 2 786 1 262

pjet1T > 250 GeV, pjet2T > 100 GeV 2 436 1 738 698

/ET > 150 GeV 1 735 1 211 524

min [∆R(bb)] < 1.5 1 014 774 240

Total efficiency 5.5× 10−2 9.4× 10−2 2.4 × 10−2

MSUSY = 1 TeV Incl. SUSY Signal Background

Generated events 20 671 10 923 9 748

nj ≥ 2, nb ≥ 2 5 313 4 344 969

pjet1T > 250 GeV, pjet2T > 100 GeV 4 642 3 828 814

/ET > 150 GeV 3 705 3 036 669

min [∆R(bb)] < 1.5 2 544 2 170 374

Total efficiency 0.12 0.20 3.8 × 10−2

Table 4. Number of events remaining after each step of the event selection at
√
s = 7 TeV. The

SUSY events are classified as signal or background based on the presence of (at least one) Higgs

boson in the decay chain. The total number of generated events in the inclusive sample is arbitrary.

shows the separation in ∆R =
√

(∆η)2 + (∆φ)2 between pairs of b-jets. For events with

nb > 2 all possible combinations have been included. The signal distribution is seen to peak

near the minimum separation of ∆R = 0.4 set by the jet measure, while the tt̄ background

prefers the b-jets to be more back-to-back and peaks at ∆R ∼ π.

The precise cuts applied — and their effect on the event selection — are shown for

the SUSY events in table 4 (for the 7 TeV case) and table 5 (14 TeV). Table 6 gives the

corresponding information for the SM tt̄ background. Note that the number of generated

events in these tables does not correspond to any particular luminosity, but is rather
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MSUSY = 750 GeV Incl. SUSY Signal Background

Generated events 23 771 10 874 12 897

nj ≥ 2, nb ≥ 2 5 009 3 610 1 399

pjet1T > 250 GeV, pjet2T > 100 GeV 3 287 2 422 865

/ET > 200 GeV 1 935 1 400 535

min [∆R(bb)] < 1.2 991 775 216

Total efficiency 4.2× 10−2 7.1× 10−2 1.7 × 10−2

MSUSY = 1 TeV Incl. SUSY Signal Background

Generated events 20 232 10 557 9 675

nj ≥ 2, nb ≥ 2 5 428 4 338 1 090

pjet1T > 250 GeV, pjet2T > 100 GeV 4 852 3 924 928

/ET > 200 GeV 3 392 2 719 673

min [∆R(bb)] < 1.2 1 983 1 673 310

Total efficiency 9.8× 10−2 0.16 3.2 × 10−2

Table 5. Events remaining after each step of the event selection at
√
s = 14 TeV. The event

categories are similar to those in table 4. The total number of generated events in the inclusive

sample is arbitrary.

selected to give adequate statistics for the event selection. The inclusive SUSY sample is

split into signal and background, where the signal consists of the events containing at least

one Higgs boson (as determined from Monte Carlo truth information). In the last row we

give the accumulated total efficiencies of all the cuts. Looking first at table 4, we see that

an efficiency of 5.5× 10−2 is obtained for the case with MSUSY = 750 GeV. This efficiency

is more than doubled (0.12) for the case with MSUSY = 1 TeV, since the heavier squarks

give harder jets as decay products which leads to more events passing the jet pT cuts. The

larger boost given to the LSP at the end of the decay chain also leads to an increased /ET .

The same qualitative features are visible at 14 TeV, as can be read off table 5. Due to the

favorable signal statistics at 14 TeV,6 we can afford slightly harder cuts on /ET and ∆R(bb)

in this case, something which is also needed to maintain a good background suppression.

One should therefore not be discouraged by the somewhat lower efficiencies recorded in

this case (4.2×10−2 for MSUSY = 750 GeV vs. 9.8×10−2 for MSUSY = 1 TeV). The signal

efficiencies can be compared to those for the tt̄ background, given in table 6, which are

at the 10−5 level for both energies. It is clear from this table that the hard cuts on the

jet pT and the /ET distribution are the most important handles available to suppress the

background.

As discussed in the previous section, we do not apply any specific cuts to suppress

the background from SUSY events that do not involve a Higgs boson. The numbers given

in tables 4 and 5 show that nevertheless our event selection gives rise to an improvement

also in the ratio of signal events over SUSY-background events. The largest difference in

6Going from 7 TeV to 14 TeV, the signal cross section for MSUSY = 750 GeV increases by a factor 14.5,

while the tt̄ cross section is only increased by a factor 5.
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SM tt̄ background 7 TeV 14 TeV

Generated events 900 000 2 000 000

nj ≥ 2, nb ≥ 2 259 110 576 232

pjet1T > 250 GeV, pjet2T > 100 GeV 1 120 5 189

/ET > 150 GeV (7 TeV), > 200 GeV (14 TeV) 102 405

min [∆R(bb)] < 1.5 (7 TeV), < 1.2 (14 TeV) 12 61

Total efficiency 1.3× 10−5 3.0× 10−5

Table 6. SM tt̄ background events remaining after each step of the event selection at
√
s = 7 TeV

and
√
s = 14 TeV. The total number of generated events is arbitrary.

selection efficiency between the SUSY signal and background arises from the typical number

of b quarks produced in the two cases, which is larger for the events where Higgs bosons are

produced, leading to a stronger reduction of the SUSY background by the jet multiplicity

cut. The cut on ∆R also contributes to the difference. This cut has the pleasant “side

effect” to enrich the SUSY sample in Higgs events since the jets resulting from H1 → bb̄

decays are more likely to show up for small ∆R than those from two unpaired b-jets.

4.4 Results

Figure 9 shows the resulting bb̄ mass spectra after final event selection for an integrated lu-

minosity of 5 fb−1 at 7 TeV. For events with nb > 2 only the b-jet combination minimizing

∆R(bb) has been included. This reduces effects of combinatorics and increases the sensi-

tivity for discovering resonances in the low mass region. For the scenario with relatively

light squarks (MSUSY = 750 GeV) shown in the left plot, we observe two peaks close to the

masses of the Z boson and H1, respectively. There is also a continuous distribution with

a tail towards much higher values for Mbb̄. This results from false pairings, fake b-jets, or

from b-jet pairs of non-resonant origin such as t or b̃ decays. The same qualitative features

are visible in the signal for MSUSY = 1 TeV (right plot), but the statistics is rather poor

due to the low signal cross section. In figure 10 we show the Mbb̄ distribution at 14 TeV,

again for an integrated luminosity of 5 fb−1. Here the signal statistics is much higher, so

that a clear distinction of the H1 resonance from the background should be possible both

for MSUSY = 750 GeV (left) and MSUSY = 1 TeV (right).

The same distributions are shown in figures 11 (for the LHC at 7 TeV) and 12 (for

14 TeV), but here with stacked histograms to more closely resemble “real” data. Here we

have furthermore split up the inclusive SUSY sample into signal events (displayed in red),

characterised by the presence of (at least) one Higgs boson in the decay chain, and the

remaining SUSY background events (black). The latter constitutes an additional source of

background besides the SM tt̄ background (light gray). In figure 11 we see that the most

striking feature is the H1 peak. Although the tt̄ background peaks at roughly the same

position as the signal, the statistics of signal events should be sufficient for establishing a

signal over the background. In the 14 TeV case, figure 12 illustrates the features observed

already in figure 10. The H1 peak stands out clearly above the background distribution,

both for MSUSY = 750 GeV and MSUSY = 1 TeV.
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Figure 9. Invariant mass of b-jet pairs after final event selection for the inclusive SUSY sample

(red, dashed) and SM tt̄ background (solid) at 7 TeV in the modified P4 scenario with MSUSY =

750 GeV (left) and MSUSY = 1 TeV (right). The histograms have been normalized to an integrated

luminosity of 5 fb−1.
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Figure 10. Invariant mass of b-jet pairs after final event selection for the inclusive SUSY sample

(red, dashed) and SM tt̄ background (solid) at 14 TeV in the modified P4 scenario with MSUSY =

750 GeV (left) and MSUSY = 1 TeV (right). The histograms have been normalized to an integrated

luminosity of 5 fb−1.

With the assumed statistics, no peaks are observed in the bb̄ mass spectrum for the

heavier Higgs bosons H2 and A1. This is mainly due to the smallness of the branching

ratios into the bb̄ mode because of the open Higgs decay channels. Part of the difficulty in

observing the heavier resonances is also a result of selecting the combination minimizing

∆R(bb) in configurations with multiple b-jets, which favors selection of the light H1.

In order to obtain an estimate of the significance of the H1 mass peak we have per-

formed a Gaussian fit to the maximum of the distributions in figures 11 and 12. Table 7

lists the results extracted from the fit for the mean valueMH and the 1σ width ∆MH of the

Gaussian peak. We find that the fitted central values reproduce well the correct H1 mass

for all cases (recall that the input mass used in our numerical simulation isMH1
= 40 GeV).

The statistical uncertainty on the mean value MH from the fit is about ±3 GeV for the

LHC energy of 7 TeV and about ±1 GeV for 14 TeV. This reflects the lower signal statis-
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Figure 11. Invariant mass of b-jet pairs for SUSY signal (red), SUSY background (black) and

SM tt̄ background (light gray) in the modified P4 scenario with MSUSY = 750 GeV (left) and

MSUSY = 1 TeV (right) at 7 TeV for an integrated luminosity of 5 fb−1.
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Figure 12. Invariant mass of b-jet pairs for SUSY signal (red), SUSY background (black) and

SM tt̄ background (light gray) in the modified P4 scenario with MSUSY = 750 GeV (left) and

MSUSY = 1 TeV (right) at 14 TeV for an integrated luminosity of 5 fb−1.

tics available in the low energy running, and the more coarse binning in Mbb̄ required to

observe the peak.

The number of signal and background events in the peak region is obtained by inte-

grating Mbb over the interval [MH − ∆MH ,MH + ∆MH ], corresponding to ±1σ of the

Gaussian distribution. As explained above, the combined background includes both the

events from SM tt̄ and the part of the inclusive SUSY sample containing no Higgs bosons

in the cascades. The event numbers are combined into the ratios of signal/background

(S/B) and S/
√
B given in table 7. We use S/

√
B as a simple illustration for the expected

significance and in particular for comparing between the four example cases we consider

here and with other theoretical studies using the same criterion. Clearly, claiming an

actual discovery would require a more sophisticated statistical treatment. We regard it

nevertheless as encouraging that a significance of S/
√
B > 5 is achieved for three of the

four cases considered in table 7. The only exception is the case MSUSY = 1 TeV for the
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√
s MSUSY (GeV) MH (GeV) ∆MH (GeV) S/B S/

√
B

7 TeV 750 41.6 12.2 3.4 8.2

7 TeV 1000 37.7 17.6 1.4 3.9

14 TeV 750 39.5 8.0 4.5 29.7

14 TeV 1000 39.4 9.7 4.3 29.3

Table 7. Mean value MH and width ∆MH extracted from a Gaussian fit to the bb̄ mass peak. The

corresponding number of signal (S) and background (B) events is recorded in the ±∆MH interval

around the fitted resonance mass. All results are presented for an integrated luminosity of 5 fb−1.

LHC at 7 TeV, where S/
√
B = 3.9 with 5 fb−1. A somewhat higher luminosity (or a

combination of ATLAS and CMS data) would be needed in this case in order to reach a

significance S/
√
B ≥ 5. The very high significances of about 30 obtained for the 14 TeV

case illustrate the qualitative features already observed in the discussion of figures 10 and

12: there should be no problems in establishing a signal in this mass region.

5 Summary and Conclusions

The NMSSM is both theoretically appealing as an extension of the SM and interesting

phenomenologically, as its spectrum may contain Higgs bosons with mass much below the

limits in the SM or the MSSM. We have investigated an NMSSM scenario with a light

CP-even Higgs in the mass range 20 GeV < MH1
< MZ . Scenarios like this may be missed

with the standard Higgs search channels at the LHC, in particular due to a potentially large

branching ratio of the heavier H2 state, that has SM-like couplings to gauge bosons, into

a pair of light Higgses. We have pointed out that there are good prospects for discovering

such a light Higgs boson in SUSY cascade decays at the LHC.

We have performed a Monte Carlo simulation of the signal and the dominant back-

ground to the level of fast detector simulation, taking into account also background from

other SUSY events that do not involve cascade decays containing a Higgs boson. For

our numerical analysis we adapted the “P4” benchmark point proposed for the NMSSM,

choosing MH1
= 40 GeV as example value for the mass of the light Higgs. Production of

squarks and gluinos via the strong interaction at the LHC may give rise to cascade decays

involving heavy neutralinos and charginos decaying into lighter ones and a light Higgs. We

have investigated the impact of various kinematical variables on discriminating between

the inclusive SUSY signal (including events both with and without a Higgs boson in the

cascade) and the SM background from tt̄ production. A set of simple cuts has been devised

that turned out to be efficient for establishing the inclusive SUSY signal. We did not as-

sume any specific knowledge about the background from SUSY events without a Higgs in

the cascades. Accordingly, besides favoring events containing the light H1 by selecting the

combination minimizing ∆R(bb) in configurations with multiple b-jets, we have not applied

any particular cuts for suppressing the SUSY background.

Our results show that reconstruction of the decay of the light Higgs into bb̄ may be

feasible. Such an observation would be a direct experimental sign of the bottom Yukawa
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coupling, which is difficult to access in standard search channels. We have investigated two

values of the soft SUSY-breaking parameter in the squark sector, MSUSY = 750 GeV and

MSUSY = 1 TeV, while we set the gluino mass parameter to 1 TeV. A modest integrated

luminosity of 5 fb−1 has been considered for LHC running both at 7 TeV and 14 TeV. We

find a statistical significance for the H1 mass peak of S/
√
B ≈ 4 for MSUSY = 1 TeV at√

s = 7 TeV. This significance increases to S/
√
B ≈ 8 for MSUSY = 750 GeV at 7 TeV

and reaches a level of almost 30 for both values of MSUSY at 14 TeV. While the example

values that we have chosen for MSUSY and the gluino mass are close to the current search

limits from the LHC, the large statistical significance that we have found for the 14 TeV

case indicates that there is certainly scope to extend our analysis to scenarios with heavier

squarks and gluinos or to scenarios with reduced branching ratios of the neutralinos into

Higgs bosons. Since the high-energy run of the LHC is not imminent, we leave a more

detailed analysis of this reach for future work.

The results presented here have been obtained in a specific benchmark scenario, but it is

easy to see that they are more generally applicable. First of all, the value MH1
= 40 GeV

used in our numerical analysis was chosen just for illustration. Our results are rather

insensitive to the precise value of MH1
. Since the production relies on the decay of heavier

SUSY states, with branching ratios largely independent of MH1
, the Higgs production

rates remain similar for the whole mass range MH1
< MZ . The event selection and signal

identification through H1 → bb̄ proceeds along similar lines as we have discussed.

Concerning the settings of the other SUSY parameters, our results will be similar for

other scenarios fulfilling a few simple criteria: Obviously, the neutralinos and charginos

have to be sufficiently lighter than the squarks and gluinos in order to be produced at all

in the cascade decays of the latter. The squark decays also provide the hard jets utilized

in the event selection. With the present limits from the LHC searches on the masses of the

gluino and the squarks of the first two generations this criterion is almost automatically

fulfilled for any model of interest. Furthermore, the neutralino and chargino mass hierarchy

and mixing character must be such that the squark decays go through heavier neutralinos

or charginos, and the decays of the latter into a light Higgs and a lighter neutralino or

chargino are open. Such a scenario is disfavored if the LSP is gaugino-like. In order to

generate a sufficient number of Higgs bosons in the cascade decays, it is also advantageous

for (at least one of) the gauginos to be heavier than the Higgsinos, so that an intermediate

Higgsino decay step can be present. In the NMSSM such a situation can be realized quite

easily if the LSP is singlino-like.

While the results presented in this paper are based on a rather simple-minded analysis,

involving for instance just a fast detector simulation, we nevertheless regard them as very

encouraging, motivating a further exploration of the potential for detecting a light non-SM

type Higgs in SUSY cascade decays. In fact, there exists the exciting possibility that the

discovery of a SUSY signal could go hand in hand with the discovery of one or more Higgs

bosons.
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