

Далее было изучено влияние реакторного облучения различными флюенсами  $\Phi$  на теплопроводность сплава. Например, при росте  $\Phi$  до  $10^{18}$  см<sup>-2</sup> обнаружено существенное изменение графика  $\lambda$ (T), некоторый излом около  $100^{9}$ C и уменьшение параметра. Последующее пребывание пластин в каналах реактора до сравнительно большой дозы ( $10^{19}$  см<sup>-2</sup>) привело к дальнейшему преобразованию кривой, ее снижению и наличию экстремума, который сместился в сторону повышенных температур. Оценен радиационный эффект изменения теплопроводности материала для функции  $\lambda$ ( $\Phi$ ), который зависит от  $\Phi$  и составляет значительную величину Обсуждаются вероятные причины обнаруженных радиационных эффектов модифицирования теплопроводности конструкционного сплава CAB-1 после длительной его обработки в каналах ядерного реактора и возможный механизм рассмотренного в работе явления переноса тепла в нем.

# МОДЕЛИРОВАНИЕ МЕХАНИЗМОВ ВЗАИМОДЕЙСТВИЙ НАНОЧАСТИЦ Si<sub>m</sub>H<sub>n</sub>

*H.T. Сулайманов* Институт Ядерной Физики АН РУ, e-mail: nts\_05@mail.ru

# введение

Образование и взаимодействие наноразмерных частиц  $Si_mH_n$  в разных эксперименталь-ных условиях имеет целый ряд особенностей, которые часто приводят к проявлению новых, не наблюдаемых в объемном кремнии свойствам [1]. Экспериментальные методы генерирования таких частиц хорошо известны [2-4]. При отрыве от мишени и во время пролета в газовой среде или в вакууме, а так же при осаждении на подложку, наноразмерные частицы находятся в метастабильных состояниях, и большая часть избытка энергии расходуется на взаимодействия между частицами. С целью выяснения структурных и энергетических параметров кластеров, образующихся в результате взаимодействий малых гидрогенизированных кластеров кремния ( $Si_mH_n$ ), выполнено моделирование процесса при условиях, соответствующих условиям газофазной среды около мишени в экспериментах по генерированию кластеров [1-4]. Для расчетов равновесных структур кластеров, соответствующих глобальным минимумам энергии связи применили нетрадиционный метод сильной связи [5] в комбинации с молекулярной динамикой, где для расчета сил используется алгоритм предложенный в [7].

# МЕТОД МОДЕЛИРОВАНИЯ СТРУКТУР И СВОЙСТВ КЛАСТЕРОВ

Используемый в данной работе НМСС [5] основан на следующем выражении для полной энергии

$$E_{tot} = E_{rep} + E_{bond} + \Delta E . \tag{1}$$

Здесь  $E_{bond}$  представляет собой чистую электронную составляющую энергии химической связи.  $\Delta E$  –

сумма изменений полных энергий индивидуальных атомов по отношению к изолированным атомам, которые могут быть параметризованы модифицированной формулой Слейтера-Зернера [5] без явного обращения к  $E_{ee}^{intra}$  и с использованием точных и многочисленных спектроскопических данных по атомам и ионам. Член отталкивания имеет достаточно простой физический смысл

$$E_{rep} = E_{nn} - E_{ee}^{\text{inter}} + E_{bond} \cong E_{nn} + E_{ne}^{\text{inter}}, \qquad (2)$$

так как больше не включает сложную составляющую  $E_{ee}^{\text{inter}}$ ; она сокращается в разности  $E_{bond} - E_{ee}^{\text{inter}}$ [5], оставляя простую составляющую  $E_{ne}^{\text{inter}}$ , энергию притяжения электронов, локализованных вокруг одних ядер, к другим ядрам (двухцентровые кинетические энергии электронов не показаны в (2); знак приближенного равенства отражает это обстоятельство).

Выражение для полной энергии может быть записано и в следующем виде

$$E_{tot} = \widetilde{E}_{rep} + 2E_{bond} + \Delta E , \qquad (1a)$$

которое используется в варианте МСС, основанном на упрощенной оценке матрицы порядков связей [6], однако опять же без надлежащего внимания к последнему члену; применяется приближение локального зарядового нейтралитета для повышения эффективности расчетов. Сравнивая уравнения (1а) и (1), можно видеть, что член  $E_{rep}$  является более короткодействующим, чем  $\widetilde{E}_{rep}$ :  $E_{rep} \approx \widetilde{E}_{rep}/2$  на расстояниях порядка характерных длин связей и  $E_{rep} << \widetilde{E}_{rep}$  на больших расстояниях (это также связано с видом отталкивательного члена в нашем случае) при условии, что E<sub>bond</sub> и  $\Delta E$  имеют одинаковые значения в обоих уравнениях. Вследствие этого и из-за простого физического смысла, E<sub>rep</sub> можно более надежно представить суммой функций парных взаимодействий, чем  $\widetilde{E}_{ren}$ , что важно как для эффективности, так и для точности расчетов. Отсюда также можно заключить, что более протяженный характер  $\widetilde{E}_{ren}$ , по-видимому, является основной причиной систематической переоценки длин связей в кремниевых кластерах традиционными МСС. При выполнении итеративных самосогласованных расчетов НМСС для ускорения получения результата применяются алгоритмы динамического демпфирования и сдвига уровней. В каждом временном шаге (в наших расчетах ~10<sup>-15</sup> с) для достижения самосогласованного результата оказались достаточны 2-5 итераций. Далее результат обрабатывается по алгоритму молекулярной динамики, предложенной в [7]. При достижении глобального энергетического минимума, расчеты завершаются и выводится конечный результат.

# РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ ВЗАИМОДЕЙСТВИЙ КЛАСТЕРОВ SimHn

Мы в рамках компьютерного моделирования методом НМСС в комбинации методом молекулярной динамики выполнили расчеты структур и энергий равновесных состояний, которые, как мы предпологаем, соответствуют глобальным минимумам полных энергий связи кластеров SiH, SiH<sub>2</sub>, SiH<sub>3</sub>, SiH<sub>4</sub>. Затем, в рамках молекулярной динамики, используя алгоритм T-12, предложенной в [7] исследовали динамику взаимодействия этих кластеров в нейтральном и заряженных состояниях. По результатам наших исследований можно заключить, что

1. При взаимодействии атомов Si и H как в нейтральном, так и в заряженных состояниях, образование SiH кластера происходит при достижении расстояния R<sub>Si-H</sub>≈1.51Å.

2. При взаимодействии атома Si и двух, трех и четырех атомов H (или молекулой H<sub>2</sub>) в нейтральном состоянии образуется SiH<sub>2</sub>, SiH<sub>3</sub>, SiH<sub>4</sub>, но если какой-либо из атомов, участвующих во взаимодействии, заряжен – один атом водорода связывается с Si, образуя SiH<sup>+</sup> или SiH<sup>-</sup> радикал, а другие – отлетают в сторону.

3. При взаимодействии в нейтральном состоянии двух SiH образуется Si<sub>2</sub>H<sub>2</sub>, в положительно заряженном состоянии образуется Si<sub>2</sub>H кластер, второй атом водорода отлетает.

4. Образование устойчивых структур Si<sub>5</sub>H<sub>n</sub> (n=4,5) и Si<sub>6</sub>H<sub>n</sub> (n=6,11), по результатам наших расчетов возможно для нейтральных и положительно заряженных состояний. В случае взаимодействия шести SiH кластеров или SiH<sub>2</sub> кластеров образуются устойчивые кольцеобразные структуры. 5. По результатам наших расчетов можно заключить, что в анионах лишний электрон «сядет» на анти-связывающую орбиталь, в результате чего электрон находящийся на связываюшей орбитале приняв часть энергии от этого электрона возбуждается и устойчивость связи резко снижается. В следствии этого, также снижаются устойчивости соседних связей и вместо образования нового кластера  $Si_mH_n$  (m=3,4,5, n=3,4,5,8,10,12) часть атомов Н покидают Si-H систему и образуют H<sub>2</sub> молекулу, остальные осколки образуют неустойчивые низко-симметричные частицы.

Креме этого, указываем на следующие обстоятельства: а) в случае дианионов (SiH<sup>-</sup>), вновь наблюдается стабилизация симметричных структур. б) образование устойчивой кольцеобразной структуры в рамках МД-оптимизации как в нейтральном, так и заряженных состояниях для Si<sub>6</sub>H<sub>6</sub> указывает на то, что стабилизация электронной структуры происходит за счет перехода электронов с антисвязывающих орбиталей на связывающие.

#### Цитированная литература

1. В.А. Батурин, А.Ю. Карпенко. ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2009. №6. *Серия:* Вакуум, чистые материалы, сверхпроводники (18), С. 175-180.

2. М. Д. Ефремов, С. А. Аржанникова, В. А. Володин, Г. Н. Камаев, Д. В. Марин. Вестник НГУ. Серия: Физика. 2007. Том 2, Выпуск 2. С. 51-60.

3. N. G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R. J. Potter, S. P. Edwardson, P. French, M. Sharp, G. Dearden, K. G. Watkins. //J Nanopart Res..Published online. 10 Apr. 2009. 8 pages.

4. Tai-Cheng Tsai, Li-Zhen Yu and Ching-Ting Lee. //Nanotechnology. 2007. 18. P.275707 (5pp).

5. Z. M. Khakimov. //Comput. Mater. Sci. 1994. V.3. P. 95-108.

6. A. P. Horsfield, A. M. Bratkovsky, M.Fearn, D. G. Pettifor, M. Aoki. //Phys. Rev. B 1996. V.53, № 19, P. 12694-12712.

7. Z.M. Khakimov. //Comput. Phys. Comm. 2002. V. 147. P. 731-734.

# тензорезистивные пленки ( $Bi_{0,3}Sb_{0,7}$ )<sub>2</sub> $Te_3$ под действием циклических знакопеременных деформаций

Сулаймонов Х.М., Султонов Ш.Д., Юлдашев Н.Х., Юлдашев Х.Т. Ферганский политехнический институт, 712022 г.Фергана, Ферганская 86 Факс:222-27-81, e-mail: <u>uzferfizika@mail.ru</u>

Исследовались поликристаллические пленки  $(Bi_{0,3}Sb_{0,7})_2Te_3$  толщиной  $d=3\cdot10^{-3}$  мм и площадью 5×20 мм<sup>2</sup>, которые получались на подложках из полиимида *МП-I* с температурой  $T = 250\cdot300$  °C методом вакуумной конденсации молекулярных пучков из газообразной фазы [1]. Для снятия деформационных характеристик (ДХ) пленки наклеивались на балку равного сопротивления из титанового сплава. Деформирование пленок проводилось изгибом балки. При этом значение относительной деформации рассчитывалось по величине прогиба консольно-закрепленной балки [2] и не превосходило  $\varepsilon = \pm 3\cdot10^{-3}$  отн.ед. Влияние количества циклов N и амплитуды  $\varepsilon$  знакопеременной механической деформации на тензометрические характеристики пленок  $(Bi_{0,3}Sb_{0,7})_2Te_3$  изучалось по изменению сопротивления R и коэффициента тензочувствительности (КТЧ) K, определяемой формулой  $K = \Delta R/(R_0 \cdot \varepsilon)$ , где  $\varepsilon = \Delta \ell/\ell_0$  и  $\Delta \ell = \ell(\varepsilon) - \ell_0$  - относительная и абсолютная деформации,  $\Delta R = R(\varepsilon) - R_0$ ,  $R_0$  - электрическое сопротивление образца при  $\varepsilon = 0$ . Очевидно, что представляет наибольший интерес изучение *ДХ* пленок в предельно малом и большом количествах N циклических знакопеременных деформаций (*ЦЗПД*).

Сначала обсудим результаты измерения абсолютного  $\Delta R = R(\varepsilon) - R_0$  и относительного  $\Delta R(\varepsilon)/R_0$  изменений сопротивления свежеприготовленных пленочных образцов при малом числе циклов нагружений в зависимости от последнего не только по значению, но и по знаку. На первом этапе рассмотрим область деформаций растяжения от  $\varepsilon = 0$  до  $\varepsilon = \varepsilon_0$ , а во втором этапе получим