

WASHOUT BEHAVIOUR OF CHROMIA-DOPED UO₂ AND GADOLINIA FUELS IN LWR ENVIRONMENTS

C. DELAFOY – M. ZEMEK

AREVA NP

Content

Introduction

- General background
- AREVA Cr₂O₃-doped fuel development
- Focus on washout fuel consequences
- Assessment of AREVA Cr₂O₃-doped fuel behaviour in a defective fuel rod
 - Fuel specimens
 - Oxidation behaviour
 - Experimental means
 - Influence of oxygen and pellets characteristics
 - Washout behaviour
 - Experimental means
 - PWR and BWR conditions

Conclusions

Introduction

IAEA TM - Villigen - Nov. 23-26, 2009 - AREVA NP Proprietary - © AREVA NP - All rights reserved p.4

General Background

Action lines continuously reviewed to maintain nuclear power generation more economical and competitive

Long term Dpgraded operating practices:

- Power uprate / High burn-up / extended fuel cycles
- Improvement in nuclear plant availability and flexibility
 - Load-follow
 - Extended low power operations
 - Fast return to power

Short term Fuel reliability and robustness

Substantial lever for improving plant availability

FUEL

Double challenge in the development of advanced fuel materials

AREVA Cr₂O₃-Doped Fuel Development

Fuel development initiated by AREVA in 1990 with the aim to provide a fuel product for:

- Better uranium utilization
- Higher reliability and robustness
- AREVA optimized Cr₂O₃-doped UO₂ fuel key advantages:
 - Better Fuel Utilization

- High density fuel giving an **increase of the U²³⁵ mass** per fuel assembly
- Improved PCI Performance
 - Very high adaptability in terms of power level variation (ramp rate)
 - Bring additional margins in fuel maneuverability
- Increased Operational Margins
 - Enhanced fission gas retention inducing lower internal pressure in fuel rods at end of life
 - Enable to **operate** the fuel assemblies up to high burnup levels, for reactor **power uprate**, **fuel stack length optimization**
 - Improved back-end fuel cycle conditions

AREVA Cr₂O₃-Doped Fuel Development (Cont.)

AREVA optimized Cr_2O_3 -doped UO_2 fuel **key advantages**:

Improved Reliability

• Higher resistance to chipping (missing pellet surface)

Fracture of Cr₂O₃-doped pellet generates few particles

FUEL

Chipping mass loss ratio : $\frac{Cr_2O_3 - doped \ fuel}{Std. UO_2 \ fuel} = 0.60$

• Enhanced wash-out behavior for lower activity release in case of defective rods

IAEA TM - Villigen - Nov. 23-26, 2009 - AREVA NP Proprietary - © AREVA NP - All rights reserved p.7

Focus on Washout Fuel Consequences

Failed fuel degradation after the occurrence of primary defects can affect nuclear reactor operation:

High release of fission products to primary coolant

- Fuel washout due to direct contact of fuel pellet with the coolant
 - Tramp uranium results in increasing background activity level
- Previous experiments and observations reveal:
 - UO₂ fuel readily oxidized (high oxygen diffusion rate)
 - Oxidation process controlled by surface reaction (grain boundaries)

FUEL

Fuel pellet characteristics may have a crucial impact on its dissolution tendency

Assessment of AREVA Cr₂O₃-Doped Fuel Behaviour in a Defective Fuel Rod Fuel Specimens

FUEL

IAEA TM - Villigen - Nov. 23-26, 2009 - AREVA NP Proprietary - © AREVA NP - All rights reserved p.9

Fuel Specimens AREVA Optimized Chromia-Doped UO₂

General features: large grain (FGR target), viscoplastic (PCI target) microstructure with the right amount of Cr₂O₃

Fuel Specimens AREVA Optimized Chromia-Doped (U-Gd)O₂

- Development process launched on the model of Cr_2O_3 -doped UO₂ fuel
- Fundamental and basic studies:
 - \diamond To assess the influence of Cr₂O₃ doping on (U-Gd)O₂ properties
 - \diamond To optimize the Cr₂O₃ doping level for maximum of improvements

(U-Gd)O₂ densification behaviour can be significantly enhanced

- Low doping amount: < 0.075 wt%

 <p>hardly no effect
- High doping amount: >0.3 wt%
 solarization effect

ARE

 \blacktriangleright (U-Gd)O₂ phase structure only modified when Cr₂O₃ in excess to its

solubility limit into the fuel matrix:

Fuel Specimens AREVA Optimized Chromia-Doped (U-Gd)O₂ (Cont.)

- ► (U-Gd)O₂ polycrystalline structure:
 - Large grains > 40 µm from 0.16 wt% doping amounts

(U-Gd)O₂ fuel thermal conductivity:

- Laser flash method up to 1500°C
- No impact of Cr₂O₃-doping in comparison to non-doped (U-Gd)O₂ fuel

Fuel Specimens AREVA Optimized Chromia-Doped (U-Gd)O₂ (Cont.)

(U-Gd)O₂ fuel viscoplasticity:

FUEL

- Creep testing at high temperatures (1500°C) and compression stresses [30-60 MPa]
- ln comparison to non-doped (U-Gd) O_2 fuel:
 - Cr₂O₃ doping enhances distinctly the fuel plastic behaviour: improvement factor up to 10
 - Positive effect attributed to the grain size enlargement allowing compensation of the fuel matrix hardening due to solid solution formation

Optimum Cr_2O_3 level of 0.16 wt% for (U-Gd)O_2 doping as for UO₂ resulting in a large grain and viscoplastic fuel matrix without detrimental effects on thermal characteristics

IAEA TM - Villigen – Nov. 23-26, 2009 – AREVA NP Proprietary – © AREVA NP - All rights reserved p.13

Assessment of AREVA Cr₂O₃-Doped Fuel Behaviour in a Defective Fuel Rod

Oxidation Behaviour

IAEA TM - Villigen - Nov. 23-26, 2009 - AREVA NP Proprietary - © AREVA NP - All rights reserved p.14

Fuel Oxidation Behaviour Experimental Means

Test program to characterize:

 The oxidation behaviour of fuel pellets by thermogravimetry tests under Ar/O₂ gas mixtures at 380 °C - 40 h

Pure reaction of fuel with oxygen

- Comparison Cr₂O₃-doped UO₂ and non-doped UO₂ fuel pellets
- Variants: UO₂ powder source, density, grain size characteristics
- Follow-up:

- Absolute mass change and kinetics of mass change
- Penetration depth of oxygen by ceramographic examinations
- Phase analysis by X-ray diffractometry

Fuel Oxidation Behaviour Investigation of Pure Reaction with Oxygen

Non-doped UO₂ samples - Ar+O₂ mixtures – 0.01 < $O_2\%$ < 1

0.01 % O₂

0.05 % O₂

0.1 % O2

1 % O₂

Intergranular oxidation mode

- Consequent matrix volume increase: oxidizing-induced stresses leading to crack propagation and to strip deeper grain layers
- Significant attack from 0.1% O₂
- Pellet pulverization after 20h testing under Ar+1% O₂

Fuel Oxidation Behaviour Investigation of Pure Reaction with Oxygen (Cont.)

Oxidation kinetics varies according to [O₂] in Ar

ARE

Fuel Oxidation Behaviour Investigation of Pure Reaction with Oxygen (Cont.)

Oxidation phase identification

FUEL

Two-step reaction process: $UO_2 \rightarrow U_4O_9/U_3O_7 \rightarrow U_3O_8$

Formation of intermediate U_4O_9/U_3O_7 compound corresponds to initial non-linear oxidation before intergranular cracks formation

Fuel Oxidation Behaviour Influence of Pellet Characteristics

UO₂-source powder and pellet density (94.5 to 96.5 % TD) play no fundamental role in the UO₂ fuel oxidation:

AREV

Fuel Oxidation Behaviour Influence of Pellet Characteristics (Cont.)

Cr₂O₃-doping distinctively enhances the resistance of fuel pellets against oxidation:

Limited improvement when increasing the fuel density

More decisive effect due to fuel matrix grain size

IAEA TM - Villigen - Nov. 23-26, 2009 - AREVA NP Proprietary - © AREVA NP - All rights reserved p.20

Fuel Oxidation Behaviour Influence of Pellet Characteristics (Cont.)

Oxidation mode for Cr₂O₃-doped fuel pellets:

Ar+0.01% O₂ at 380 °C

FUEL

No intergranular cracks formed in Cr_2O_3 -doped samples:

- Oxidation surface mode
- Oxidized layers offer a protection against oxygen diffusion and decelerate the oxidation rate
- Attacked layer thinner by a factor up to 2.5 compared to nondoped UO₂

Assessment of AREVA Cr₂O₃-Doped Fuel Behaviour in a Defective Fuel Rod Corrosion Behaviour

FUEL

IAEA TM - Villigen - Nov. 23-26, 2009 - AREVA NP Proprietary - © AREVA NP - All rights reserved p.22

Fuel Corrosion Behaviour Experimental Means

Test program to characterize:

FUEL

The corrosion behaviour of fuel pellets by autoclave leaching tests:

Simulation of in-reactor environments

Study case	Pressure (bar)	Temperature (°C)	Water chemistry
BWR	70	290 (water)	70 ppm H ₂ O ₂
	70	360 (steam)	70 ppm H ₂ O ₂
PWR	180	360 (water)	650 ppm B by H_3BO_3 , 2 ppm Li by LiOH (pH ~7.4)
	100	400 (steam)	No additives

- Comparison Cr_2O_3 -doped UO_2 / (U-Gd) O_2 and non-doped UO_2 / (U-Gd) O_2 fuel pellets
- Follow-up as for thermogravimetry testing

Fuel Corrosion Behaviour PWR Conditions (Water and Steam)

No washout achieved due to the low O₂ concentration, but the corrosion process is initiated:

- Non-doped UO₂ grain boundaries highly weakened
- \bullet U₃O₇ formation as an intermediate step
- Higher resistance of the Cr-doped fuel outside surface

IAEA TM - Villigen – Nov. 23-26, 2009 – AREVA NP Proprietary – © AREVA NP - All rights reserved p.24

Fuel Corrosion Behaviour BWR Conditions

ARE

In the most severe conditions investigated (360°C / 70 bars / 70 ppm H₂O₂)

- Real washout of samples occurs
- Significant differences revealed between non-doped and doped-samples:
 - Mass loss reduced by a factor up to 5 for both configurations Cr₂O₃-doped UO₂ vs. non-doped UO₂ and Cr₂O₃-doped (U-Gd)O₂ vs. non-doped (U-Gd)O₂
 - Mass loss of doped samples is delayed compared to non-doped samples

Fuel Corrosion Behaviour BWR Conditions (Cont.)

Visual inspections on test-samples:

 UO₂-based samples: 'cauliflower' structure formed by cracked oxidized grains (volume expansion due to U₃O₈ conversion)

FUEL

Cr₂O₃-doped based samples:
 'partially intact needle-like surface.
 The outer layer protects the pellet meat from environment

Fuel Corrosion Behaviour BWR Conditions (Cont.)

Visual inspections on test-samples:

(top:hydrate regions bottom: leached broken-out areas)

FUEL

Secondary phase residue on grain boundaries of Cr-doped (U-Gd)O₂ samples which possibly contributes to the better corrosion resistance

Conclusions

IAEA TM - Villigen - Nov. 23-26, 2009 - AREVA NP Proprietary - © AREVA NP - All rights reserved p.28

Conclusions

- The entire testing program demonstrates that Cr₂O₃-doping enhances the corrosion resistance of the fuel pellets
 - Improved washout behaviour by a factor of 5 compared to non-doped UO₂ / (U-Gd)O₂ fuel pellets
- The main driver of improvement is the grain size enlargement of the fuel matrix
 - The optimum doping amount of 0.16 wt% Cr₂O₃ specified by AREVA for UO₂ and (U-Gd)O₂ fuels is especially efficient to obtain large grains of 50 and 40 µm respectively

- Enhanced operational behaviour desired to struggle against disintegration of fuel in case of defective rods and combined consequences to LWR primary coolant contaminations
- The AREVA Cr₂O₃-doped UO₂ and doped (U-Gd)O₂ fuels present high reliability and robustness features
- Both fuel types are currently under irradiation in commercial nuclear plants to meet future more demanding operating requirements

Thank you for your attention!

WASHOUT BEHAVIOUR OF CHROMIA-DOPED UO₂ AND GADOLINIA FUELS IN LWR ENVIRONMENTS

C. DELAFOY – M. ZEMEK

AREVA NP

66

FUEL

Any reproduction, alteration, transmission to any third party or publication in whole or in part of this document and/or its content is prohibited unless AREVA NP has provided its prior and written consent.

This document and any information it contains shall not be used for any other purpose than the one for which they were provided. Legal action may be taken against any infringer and/or any person breaching the aforementioned obligations.