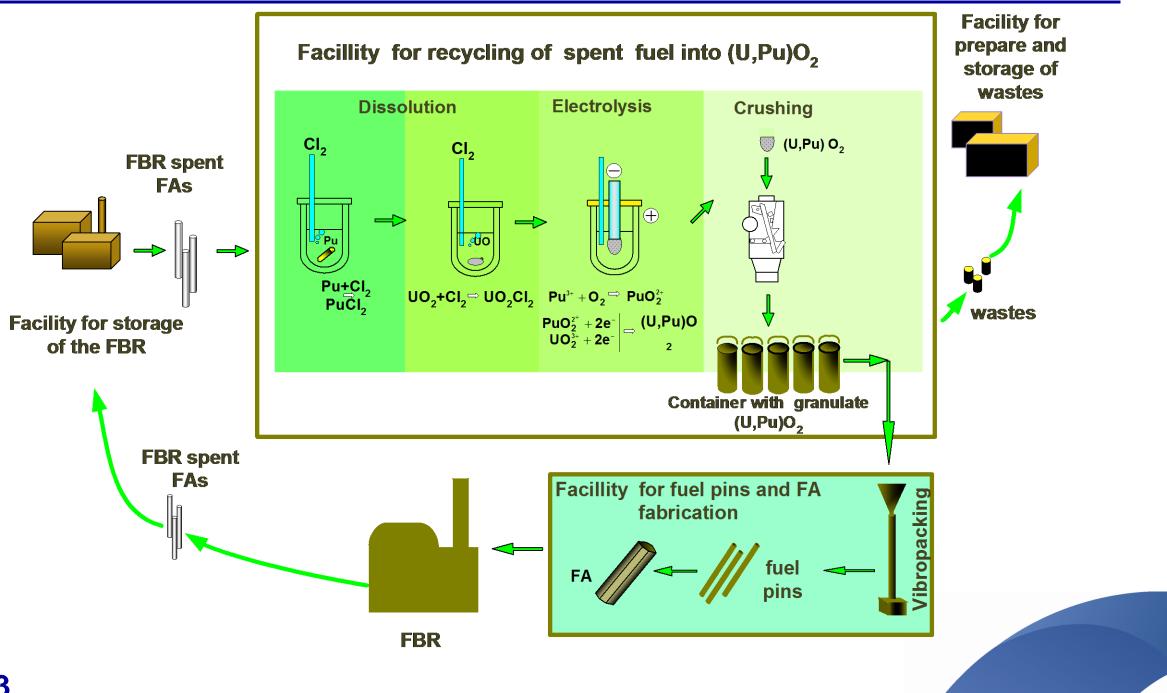


Vibropac MOX-fuel for fast reactors

V.A.KISLY, O.V.SHISHALOV, M.V.KORMILITSYN, Yu.M.GOLOYCHENKO

Main tasks


- In the USSR the activity in the field of vibropac fuel development and production started in late 60-s of the previous century as a logic end of Closed Fuel Cycle for Fast Reactors together with "dry" reprocessing 2
 - **Power-generating plutonium as a first stage of Closed Fuel Cycle for Fast Reactors creation**

SSC Research Institute of Atomic Reactors. RUSSIA

ПРЕДПРИЯТИЕ ГОСКОРПОРАЦИИ «РОСАТОМ»

Fuel Cycle for Fast Reactors

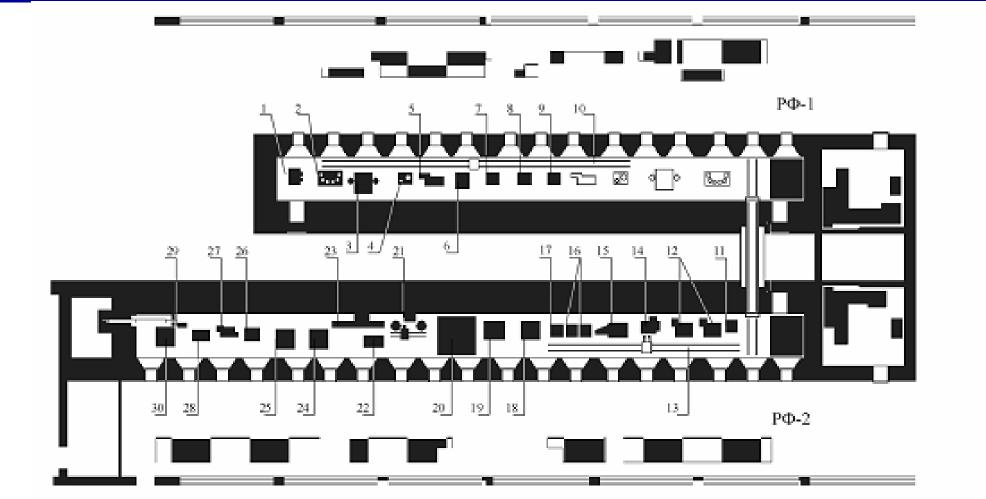
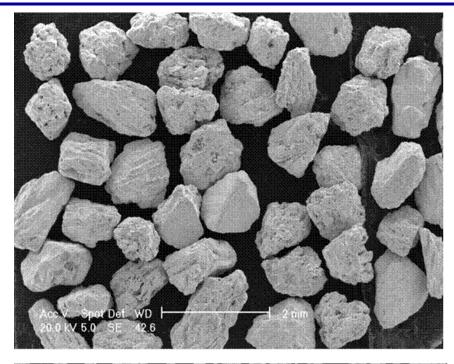
First steps, 70-s

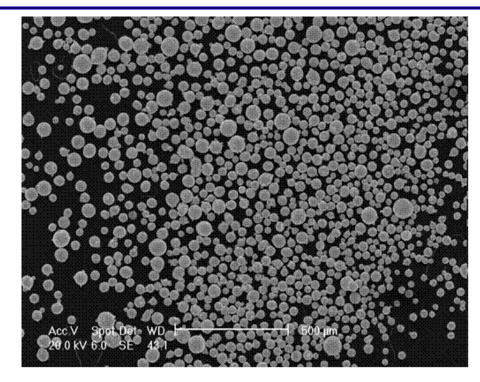
- Laboratory facilities for granulated fuel production and fuel pins manufacturing
- Requirements for fuel pins formalization
- Irradiation tests of vibropac fuel in different reactors
- Start of the OREL facility construction for BOR-60 fuel production

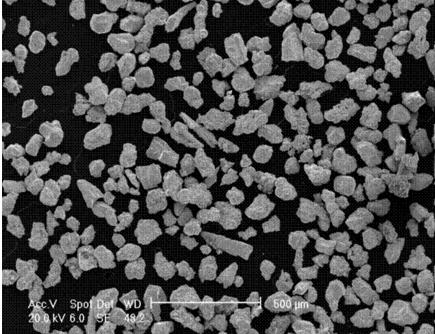
History, 70-s...80-s

- OREL facility: start-up;
- Vibropac fuel is a standard fuel for the BOR-60 reactor;
- Vibropac fuel irradiation in the BN-350 reactor;
- Substantiation of vibropac MOX-fuel for fast reactors is completed.

OREL facility

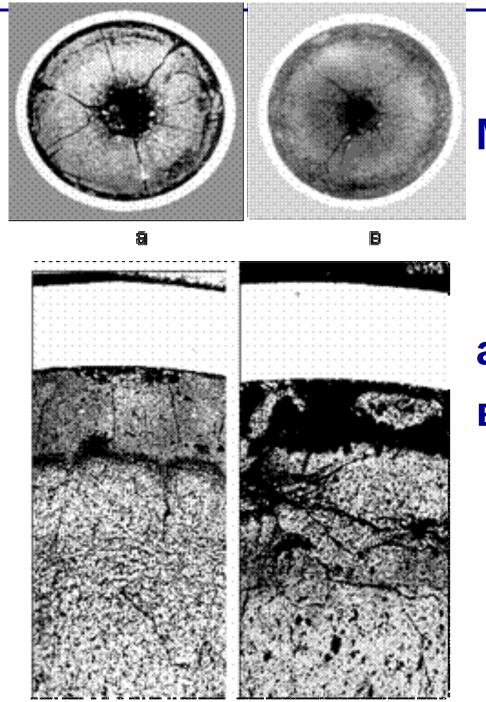

Схема расположения оборудования для изготовления твэлов и ТВС в условиях защитных камер РФ-1 и РФ-2 1- бокс разделки твэлов; 2- подготовка гранулята; 3- виброуплотнение гранулята; 4- загрузка экрана; 5- загрузка верхней заглушки; 6- герметизация твэла; 7, 8, 9, 11, 16, 17, 18, 19, 20- хранение твэлов; 10, 13- транспортная система твэлов; 12- контроль герметичности твэлов; 14- контроль распределения компонентов топливного сердечника твэлов; 15- контроль геометрических размеров твэлов и их


визуальный осмотр; 21- сборка ТВС; 22- сварка ТВС; 23- кантование ТВС; 24- контроль герметичности тволов в составе ТВС; 25- измерение гидравлических характеристик ТВС; 26- контроль сварного шва; 27- визуальный осмотр ТВС; 28- радиографический контроль сварного шва; 29- сварка контровочной гайки; 30- хранилище ТВС.

Granulated MOX-fuel

Metal content, %	87,75
Pycnometric density, g/cm ³ 10,7	
O/M ratio	$2.00^{\pm0.01}$
Impurities, %	
-chlorine-ion	0.005
-Carbon	0.015

BOR-60 Vibropac fuel


- About 1000 standard and experimental FA irradiated
- Different cladding and wrapper materials used
- Different types of vibropac fuel
 - UO_2 , $UPuO_2$, UO_2+PuO_2 ,
 - MOX-fuel with 45 PuO₂ %,
 - Fuel with 5 % of NpO₂,
 - Recycled fuel with 8 % of FP

Б

9

BOR-60 experimental fuel

Macro- and microstructure of cross section of high-temperature part of fuel rod at a burnup of 32 % and 30%h.a.:
a, б) - fuel 78 % UO₂ + 22 % PuO₂
в, г) - fuel 95 % UO₂ + 5 % PuO₂

BOR-60 vibropac fuel

• Maximum parameters

Cladding temperature – 722°C

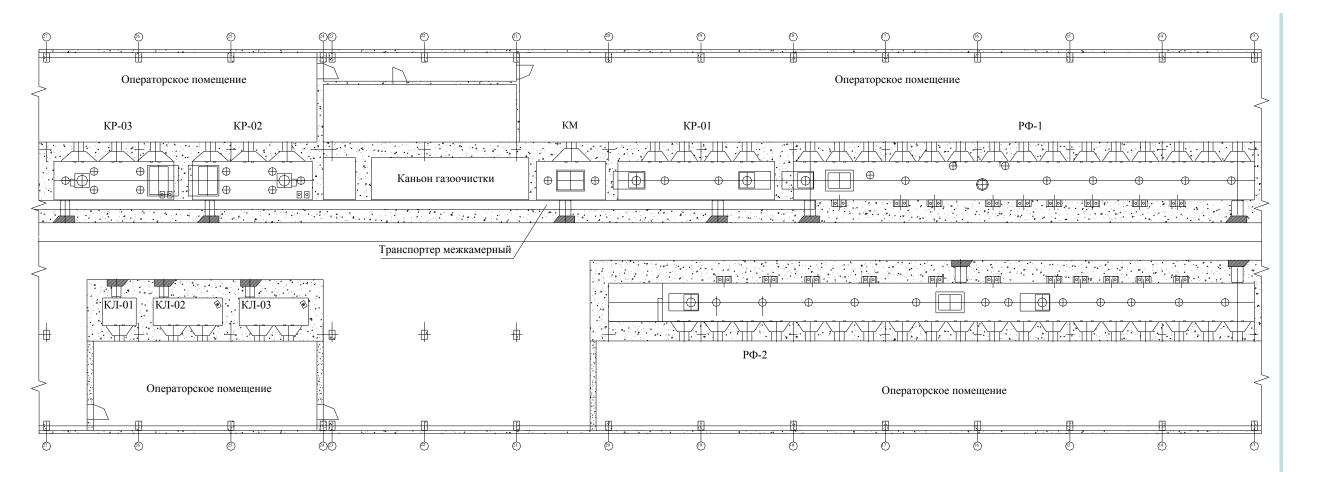
Linear power –up to 502 W/cm

Burnup – 32 % h.a.

 No corrosion internal surface of cladding. No limit burnup. Limit of lifetime – damage doze for structural material

BOR-60 vibropac fuel

- Maximum parameters
 Cladding temperature 722 °C
 Linear power 502 W/cm
 Burnup 32 % h.a.
- No corrosion internal surface of cladding. No limit burnup.
- Limit of lifetime damage doze for structural material

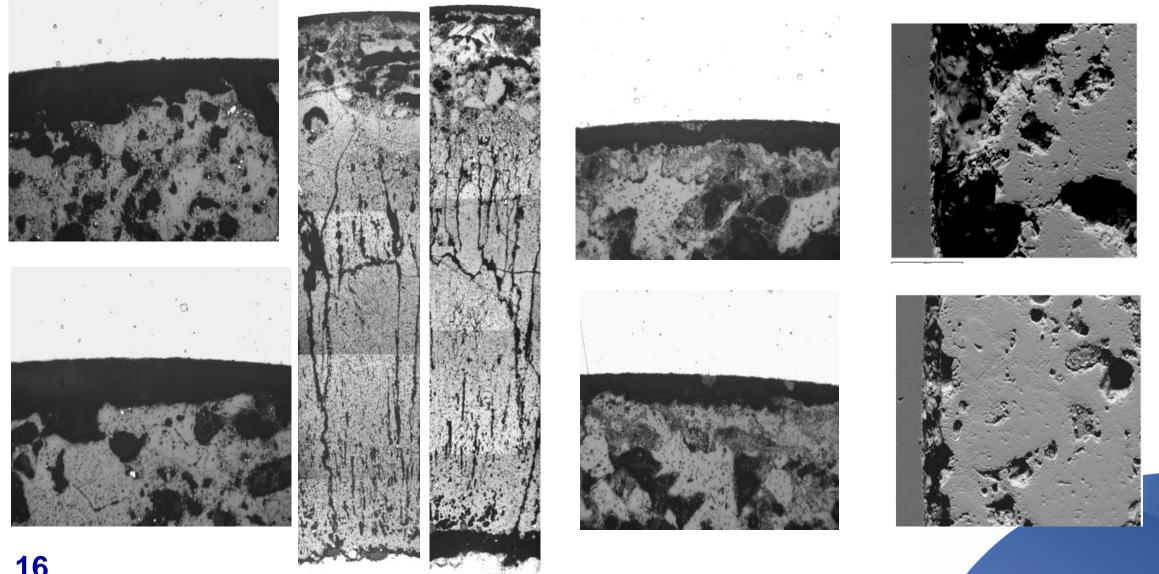

History, 80-s

- Optimization of fuel pins design and fabrication technology;
- Reconstruction of the OREL facility and creation of Semi Industrial Complex (SIC);
- Start of vibropac fuel irradiation in the BN-600 reactor.

Semi Industrial Complex

Vibropac MOX-fuel in BN-600. First stage

Serial number of FA	NF0187	NF0287	NF03NF06	
Year of production	19	87	19891990	
Getter content, %	10			
Plutonium content, %	22		~30	
Effective density, g/cm ³	8.9.	.9.1	8.89.2	
Cladding material	Steel F	EP-172	Steel ChS-68	
Wrapper material	08Cr16N	i11Mo3Ti	05Cr12Ni2Mo	
Linear heat rate, kW/м	41		47	
Cladding temperature, °C	670		680698	
Damage dose, dpa	52.3 77		6470	
Burnup, % h.a.	6.8	9.6	9.09.8	


Vibropac MOX-fuel in BN-600. Second stage.

Serial number of FA	01.99 -	04.01 -	07.03 -	10.05 -	01.05 -	04.06 -
	03.99	06.02	09.03	12.05	03.05	12.06
Year of fabrication	1999	2001 – 2002	2003	2005	2005	2006
Getter content, %	7					
Plutonium content, %	2325					
Effective density, g/cm ³	8.99.2					
Cladding material	ChS-68					
Cladding size, mm	6.6 6.9					9
Wrapper material	EP-450					
Maximum linear	401 422	439 – 453	406 – 424	395 – 407	401 – 441	296 - 374
generation,W/cm	401-423	439 - 433	400 - 424	395 — 407	401 - 441	290 - 374
Maximum cladding	670 - 680	679 – 694	658 - 675	652 - 700	690 - 703	608- 687
temperature, °C		079 - 094	050-075	052 - 700	090 - 703	000-007
Maximum fuel	10,2 -	8,6 - 8,9	9,9 – 10,6	10,0 - 10,1	9,3 - 10,0	7,1-8,7
burnup, % h.a.	10,5	0,0 - 0,9	9,9 - 10,0	10,0 – 10,1	9,5 - 10,0	7,1-0,7
Maximum damage	74,2 –	60,3 - 62,3	71,8 -	74,1 – 75,5	75 3 80.0	59,4 -
dose	77,0	00,5 - 02,5	77,7	/4,1 - /3,3	15,5 - 00,9	74,4

ИЕ ГОСКОРПОРАЦИИ «РОСАТОМ

Vibropac fuel in BN-600

Vibropac fuel in BN-600

No specific differences in radiationthermal effects in fuel pins and FA tested in BOR-60, BN-350 and BN-600 were observed.

Current Status

Up to date SSC RF RIAR has performed an extensive scope of research and developmental activities to validate vibropac oxide fuel pin application in fast reactors of BN-type.

These activities resulted in validation for mass fabrication and standard application of vibropac MOX fuel pins in the BOR-60 reactor, for expanding their application in BN-600 and in BN-800 ("hybride" core).

At the same time undoubtedly favorable results of the performed activities requires additional confirmations, statistical validations, more extended research of peculiarities found during fuel production, fuel rod fabrication, irradiation and PIE of fuel rods and FA.