
Production of innovative radionuclides at ARRONAX

<u>F.Haddad</u>, M Chérel, M Bardiès, S. Auduc, Y. Thomas, J.F. Chatal, J. Barbet, J. Martino

ARRONAX

ARRONAX

an Accelerator for Research in Radiochemistry and Oncology at Nantes Atlantique

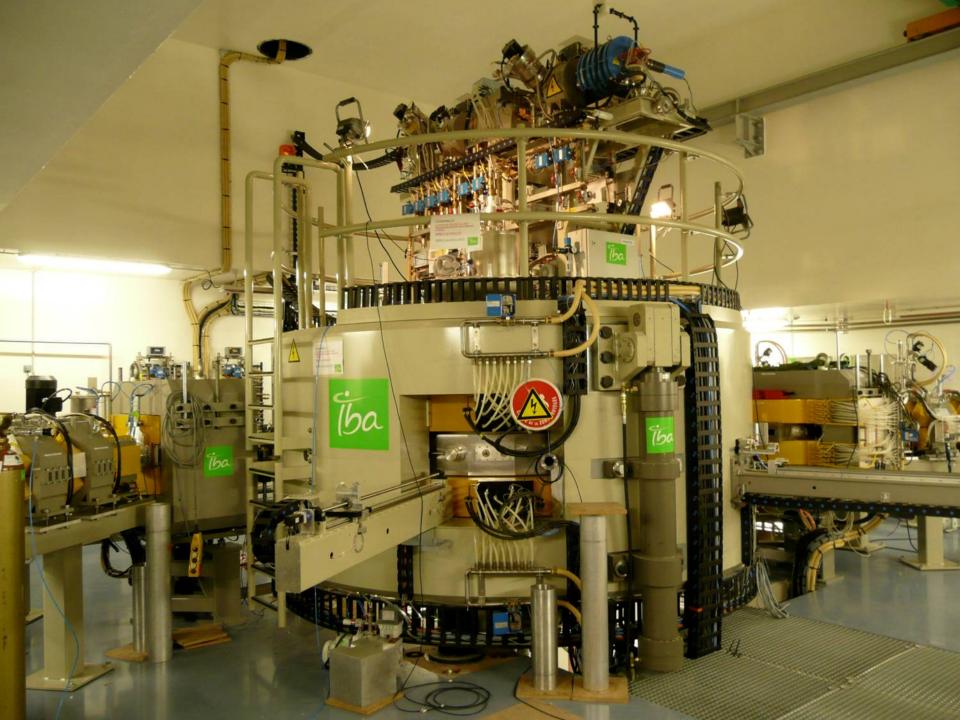
Located in Nantes (France)

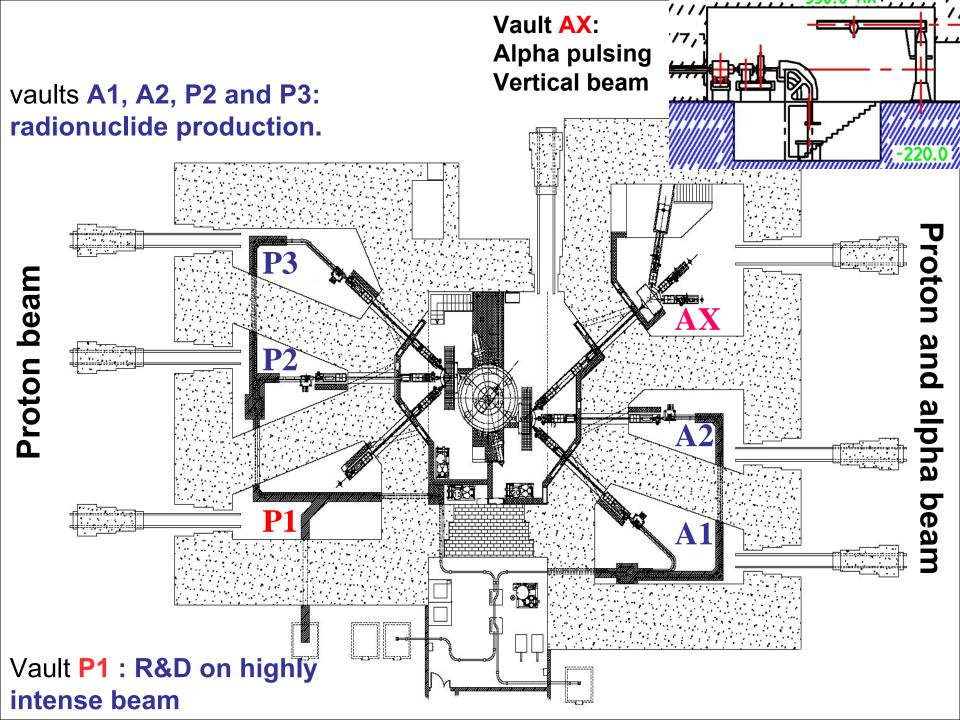
High energy (up to 70 MeV)

High intensity (up to 750 µA for protons)

3 main fields of investigations

- Radionuclides for nuclear medicine
- Radiolysis and Nuclear Physics
- Teaching & Training


Beam Characteristics


Beam	Accelerated particles	Energy range (MeV)	Intensity (µA)	Number of beams	Number of vaults
Proton	H-	30-70	<375	2	6
	HH+	17.5	<50	1	3
Deuteron	D-	15-35	<50	2	6
Alpha	He++	68	<70	1	3

6 experimental vaults connected to hot cells through a pneumatic system

Surrounding labs :

radiochemistry, biochemistry, cell biology, chemical analysis, nuclear metrology, quality control,...

Beam lines devoted to production

We need to irradiate solid target under different forms (powder, foils,...).

Two target designs will be available (medium beam current)

- A 15° rabbit (cooling through backing)
- A multi target rabbit with 4 Pi cooling

Hot Cells

3 Rooms:

•1 sterile equipped with 5 Hot cells (another one exist but not yet equipped)

•1 GMP equipped with 3 hot cells

From Von Gahlen

Installed last September

Final Acceptance Test are underway.

85% of the acceptance tests passed with success

Protons:

Beam transport validated at 375µA- 70MeV Dual beam 2x200µA -70MeV extracted 1x500 µA - 30 MeV extracted

Alpha particles:

 $25 \ \mu Ae - 68 \ MeV \ extracted$

Still to be done:

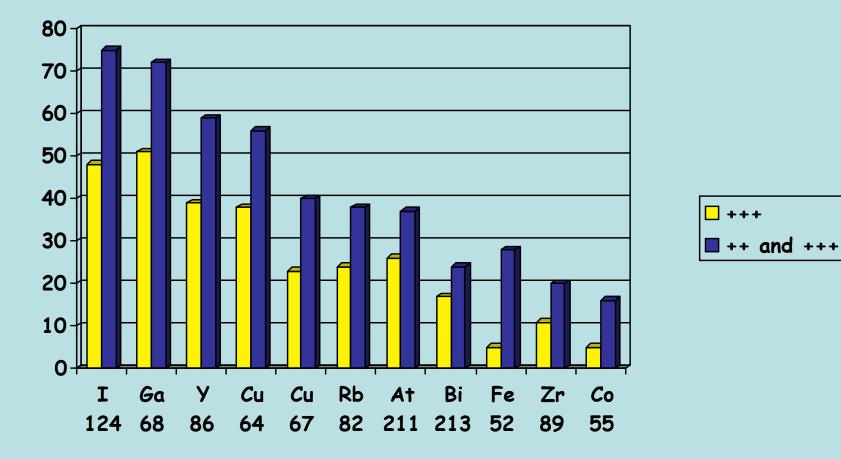
Protons: Dual beam 2x375 µA -70MeV

Alpha particles: 70 µAe – 68 MeV

Alpha pulsing integration

Radionuclides of interest

Based on ARRONAX capabilities and the analysis of the needs of the community (2006)


A questionnaire was sent to **107 EANM** members and, through the **french nuclear medicine society**, to 119 members.

« European group » 27 responses (25%) from 10 countries
 Italy (7), Germany (5), Great Britain (4),
 The Netherlands (3), Belgium (2), Swittzerland (2)
 Spain (1), Austria (1), Poland (1), Romania (1)

« French group »

40 responses (34%) from 27 centers

Merged results (67 responses, 11 countries)

Our priority list

Targeted radionuclide therapy:

²¹¹At : appropriate for α -therapy due to its half-life (7.2 hours).

⁶⁷Cu and ⁴⁷Sc : β-therapy (same β energy) require high proton energy and high current intensity (small production cross sections (p,2p))

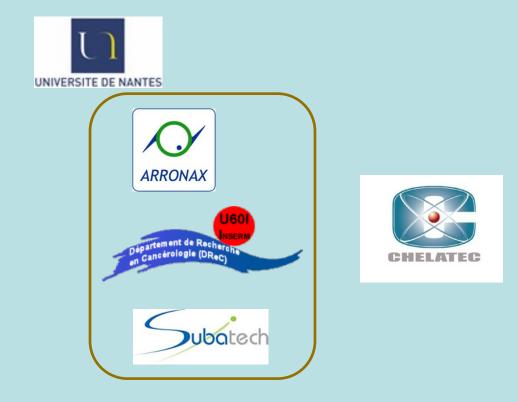
PET imaging:

⁶⁴Cu and ⁴⁴Sc: pre-therapeutic PET dosimetry before injection of their beta-emitting counterparts ⁶⁷Cu and ⁴⁷Sc

82Sr/82Rb and 68Ge/68Ga generators

⁴⁴Sc: $β^+ γ$ emitter (3 γ imaging)

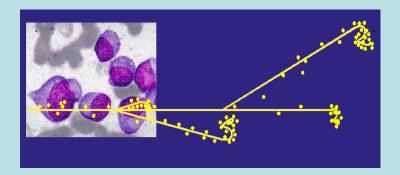
Therapeutic isotopes on ARRONAX


Partners

RADIO*ANTIBODIES AGAINS

Coordination

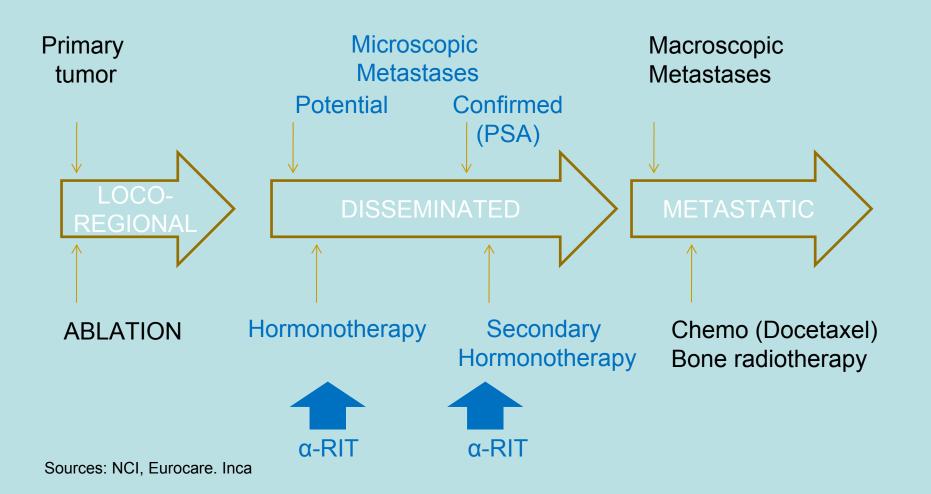
Two projects are being launched on **therapeutic issues** in collaboration with radiopharmaceutical companies:


Alpha-RIT:Radio Imuno-Therapy using 211At
major indication: prostate cancer

Active agent: β or α radio-isotope

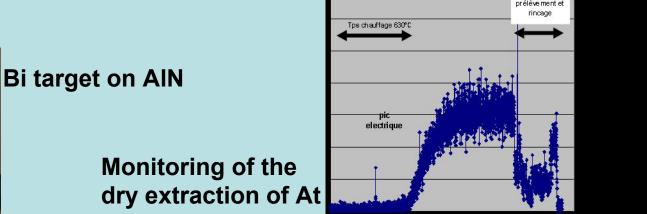
β emitter

- <1 MeV dissipated over 1 to 10 mm
- energy deposited outside the target cell
- TARGET: cell macro-clusters, metastases



α emitter

- 5-6 MeV dissipated over 0.1 mm
- energy deposited within the target cells
- TARGET: isolated cells, micro-clusters


Alpha-RIT in prostate cancer

Alpha-RIT: Why Astatine-211?

- Few potential candidates
 - ²¹¹At, ²¹³Bi, ²²³Ra, ²²⁴Ra, ²²⁷Th, ²²⁵Ac
- Medical use
 - Half-life of 7.2 h vs. 46 min (Bi) or >10 jours (Ra, Th)
 - No alpha-emitting decay products
- Easier manufacturing
 - Cyclotron (α -beam) rather than reactor
 - Stable target (Bi) rather than radioactive target
- Appropriate chemistry
 - Coupling to antibodies vs. encapsulation

First test: 5/05/09 at U892

Alpha-RIT: The issues

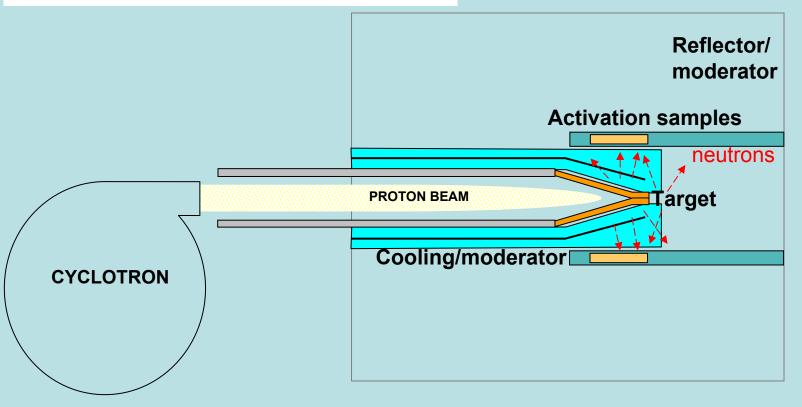
- Combine the specificity of an **antibody** targeting prostate cancer cells with an alpha-emitter
- **Produce the alpha-emitter** in larger (industrial) amounts
- Chemistry, biology, toxicology and clinical **tests** have to be carefully taken in account
- Alpha-emitters for medical use are new and **new rules** for handling these radionuclides have to be invented, approved and adopted

THERANEAN project: Therapy through Neutron Activation using Nanoparticles

> **L. Maciocco** Project Leader AAA **M. F. Mariani** Head Research and Development AAA

Theranean:

A method for production by neutron activation of isotopes for cancer therapy using medium-sized cyclotrons


Based on a principle of Adiabatic Resonance Crossing (ARC) patented by C. Rubbia (CERN). Experimentally proven at CERN between 1995 and 1997 with the TARC experiment
2005-2009: INBARCA project at JRC ISPRA

The neutron activator: principle of operation

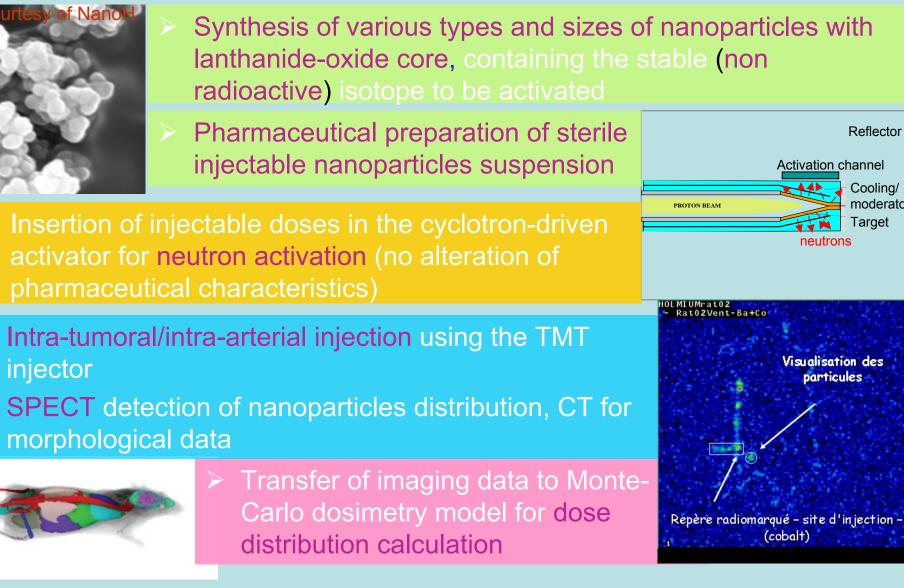
- A proton beam is generated by a cyclotron
- Protons interact with a solid target (Be,Ta)
- Fast (high energy) neutrons are generated

- Neutrons are moderated (water)
- Neutrons are reflected and further moderated (graphite)
- Nanoparticles are activated by moderated neutrons

The INBARCA projects officially ends in March 2009 with the following results

- A prototype of the neutron activator has been built and validated at JRC, coupled with a 40 MeV-50 μ A cyclotron, demonstrating the possibility to produce radioisotopes for cancer therapy using medium sized cyclotrons for medical applications.
- Animal tests carried out carried out at HEH using LAGEP and Nano-H nanoparticles gave clear evidences of the anti-tumoural effect of the proposed brachytherapy technique
- The general methodology, including animal model, nanoparticles activation, injection, follow-up and analysis was successfully demonstrated
- It is however clear that a more powerful cyclotron is necessary for an efficient industrial production of activated nanoparticles

Objectives of the THERANEAN project


Global aim:

Development of an innovative brachytherapy technique using micro/nanoparticles activated in an accelerator-driven neutron activator

Project objectives:

- Design and construction of a high-power neutron activator using 70 MeV – 350 µA proton beam.
- Characterisation of Ho/Lu-oxide, non coated/coated nanoparticles of different sizes (100-300 nm).
- Development of a medical device for the safe and effective intratumoral/intra arterial injection of activated nanoparticles
- Development of a personalised dosimetric method based on the Monte Carlo-simulation of the dose released in the tissues, starting from SPECT/CT data
- Potential clinical indications: Liver cancer, Prostate cancer, Glioblastoma

The THERANEAN method

Cooling/ moderator Target

Reflector

Visualisation des particules

neutrons

Conclusions

ARRONAX is under completion 85% of the acceptance tests have been passed with success

Several isotopes for therapy are in its priority lists (²¹¹At, ⁶⁷Cu, ⁴⁷Sc)

- 2 projects are being launched for therapeutic purposes:
 - Theranean: activation of nanoparticle for brachytherapy
 - **Alpha-RIT**: alpha immunotherapy using ²¹¹At

Thank you for your attention

The **ARRONAX** project is supported by: the **Regional Council of Pays de la Loire** the **Université de Nantes** the **French government** (CNRS, INSERM) the **European Union**.