

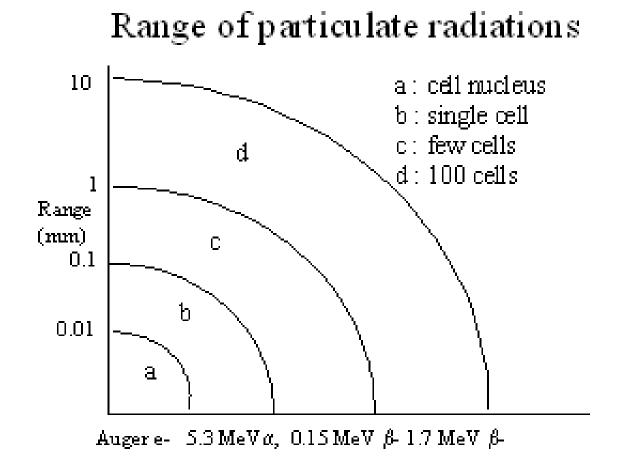

An overview of the Production, Quality Control and Feasibility of using <sup>90</sup>Yttrium as a Therapeutic Radionuclide

### Meera Venkatesh

Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India- 400085



# Why <sup>90</sup>Y for therapy?


#### **Considerations for therapy**

High LET

#### Attributes of <sup>90</sup>Y

 Hard beta rays; 2.28 MeV;
 12 mm max. tissue penetration; by-stander effect very effective!





# BARC

# Why <sup>90</sup>Y for therapy?

#### **Considerations for therapy**

- High LET
- Good chemistry
- Reasonable  $T_{1/2}$
- Availability in high specific activities
- Production feasibility
- Easy availability

### Attributes of <sup>90</sup>Y

- Hard beta rays; 2.28 MeV; 12 mm max. tissue penetration
- Y<sup>+3</sup> similar to lanthanides; forms very stable complexes
- 🗆 64.1 h

 $\Box$   $\sqrt{}$ 

 $\square \sqrt{}$ 



# <sup>90</sup>Y: Attractive Attributes for Therapy

- $T_{1/2}$  : 2.67 d ; neither too short nor too long
- E<sub>β max</sub> : 2.28 MeV; good for large volume irradiation
- +3 charge; similar to lanthanides; well established chemistry; extremely stable conjugates with 14 membered cyclic O,N based ligands like DOTA

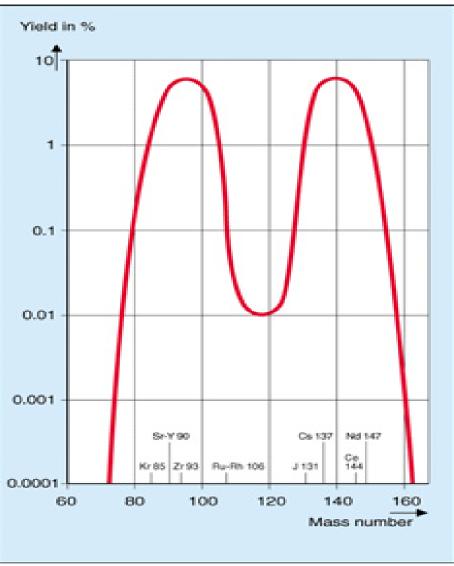
# <sup>90</sup>Y Radiopharmaceuticals – Currently used/under trials

- <sup>90</sup>Y-Silicate/citrate colloid : Radiation synoviorthesis
- <sup>90</sup>Y-microspheres (glass or resin) : Liver cancers:
- <sup>90</sup>Y-Ibritumomab (zevalin) Non-Hodgkin's lymphoma
- <sup>90</sup>Y-DOTATATE-
  - Neuroendocrine tumours
- <sup>90</sup>Y-labeled Mabs /peptides various cancers

- <sup>90</sup>Y-Epratuzomab
- 90Y-Anti-CEA mAb
- <sup>90</sup>Y-pretargeted bispecific Ab
- <sup>90</sup>Y-PAM4 Ab
- <sup>90</sup>Y-Anti-CEA mAb
- <sup>90</sup>Y-Bombesin/GRP analog
- Lymphoma, Colon,
   Pancreatic, Liver, Lung,
   prostate, breast cancers



# Sourcing <sup>90</sup>Y


- (n,γ) on <sup>89</sup>Y
  - □ Poor specific activities;  $\sigma_{th}$  few mb, though  $\theta_{nat}$  is 100%; unsuitable for most therapies
- From <sup>90</sup>Sr





### Source of <sup>90</sup>Sr

F.P. of nuclear fuels; High fission yield; 5.8% for <sup>235</sup>U; availability of large quantities (Mci/PBq) from processed spent nuclear fuel

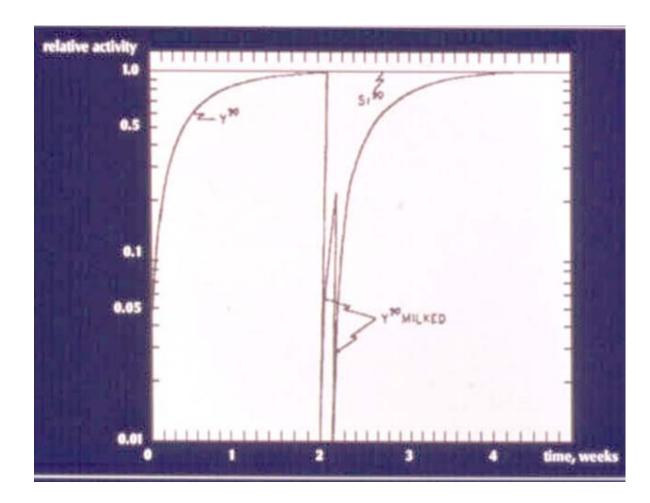


IAEA-TM



### Advantages of <sup>90</sup>Sr as source of <sup>90</sup>Y




- Very long  $T_{1/2}$  (28.8 years) of <sup>90</sup>Sr parent
- \* Short  $T_{1/2}$  (64.1 hours) of daughter <sup>90</sup>Y
- Possibility of equilibrium & availing <sup>90</sup>Sr/<sup>90</sup>Y generator
- Separation chemistry very well established & proven
- <sup>90</sup>Sr stocks in huge amounts from spent fuel processing (HLW); adequate for decades!!



# <sup>90</sup>Sr/<sup>90</sup>Y Generator systems

- $t_{max} \sim 11d;$
- ~ 80% in 3-4 d
- Based on differences in chemistry of Sr<sup>+2</sup> and Y<sup>+3</sup>
- Sol. extraction, column chy, extraction chy., eletrochemical,

etc.





### **Generator systems developed in the past**

- Solvent extraction of <sup>90</sup>Y in 0.3M HDEHP/n-dodecane from 0.3M HNO<sub>3</sub>
   *Bray and Webster, U.S. Pat. No. 5,512,256*
- Centrifugal Semi-counter flow extraction
   *(Kodina et al)*
- Ion exchange based generators using a variety of solvents



### Ion exchange based generators

AG50×16 resin and 0.6 M NaAc pH 5.5
 *(Chinol M. et al , U.S. Pat. No. 5,902,566)* Aminex-A5 resin and α-hydroxyisobutyrate

 $\Box$  (Malja S. et al)

Multiple coulmns : Dowex & AG 50 W, elution with EDTA; & HCl

 $\Box$  CENTIS, CUBA.

Novel Inorganic Exchange materials

□ (Sylvester P. et al, U.S. Pat. Appl. 20030231994; 20040005272, )

### <sup>90</sup>Sr/<sup>90</sup>Y generators – From BARC

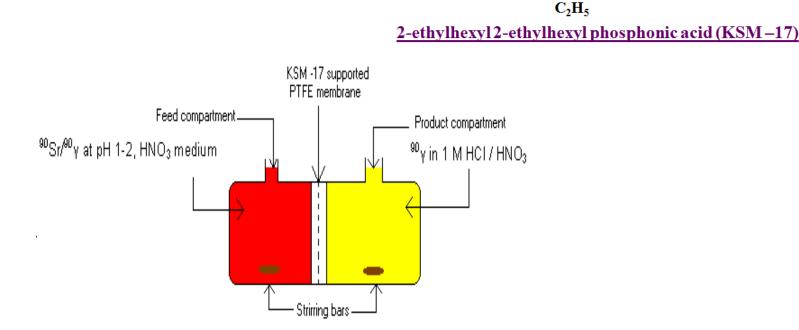
### 1. Supported Liquid Membrane(SLM) based Generators

Based on preferential transport of  $Y^{+3}$  ions through PTFE membranes loaded with Y specific chelates.

#### 2. Electrochemical generator

Based on preferential deposition of Y<sup>+3</sup> ions on cathode owing to the differences in deposition potentials for Sr<sup>+2</sup> and Y<sup>+3</sup>

*Separation Science and Technology 42, 1107-1121 2007 Nuclear Medicine and Biology 35, 245-253, 2008* Nov 16, 2009 IAEA-TM

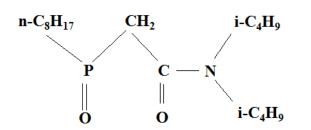



ОН

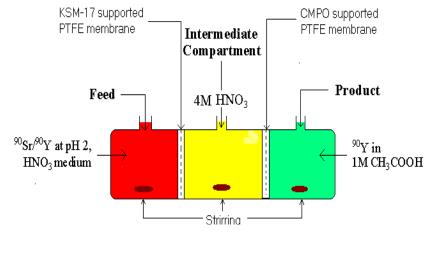
### **SLM based Generators**

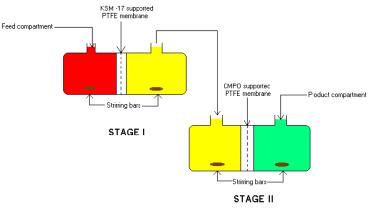
#### 

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CHCH<sub>2</sub>




IAEA-TM





# **Two Stage SLM Based Generators**

- 2 PTFE Membranes & 2 different solvents; KSM17 & CMPO
- Simultaneous mode
- Sequential mode



Octyl(phenyl)-N,N diisobutylcarbamoylmethyl phosphine oxide (CMPO)







#### Tests performed to ensure the quality of <sup>90</sup>Y obtained

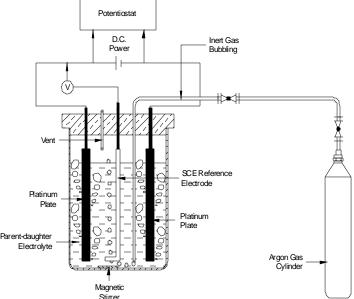
Chromatographic
 Techniques; Paper
 chromatography , Paper
 electrophoresis

\*Radiometric Techniques;  $\gamma$ -&  $\alpha$ - Spectrometry, spiking with <sup>85+89</sup>Sr tracer; following Radioactive decay

ICP-AES for trace metal analyses

# **HPLC/GC** for solvent /ligandresidues

Nov 16, 2009






### **Electrochemical generator**

#### Simple set up & Easy procedure

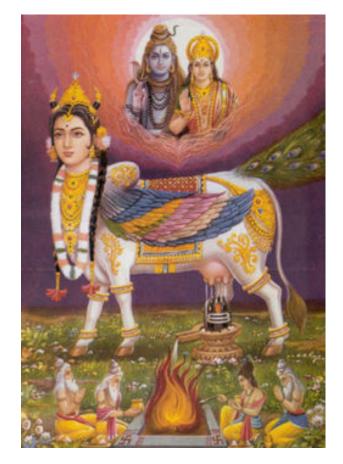
- Electrolysis of <sup>90</sup>Sr/<sup>90</sup>Y NO<sub>3</sub> at pH 2.5-3.0 for 90 minutes
- <sup>90</sup>Y gets deposited in the Pt cathode; taken out & rinsed with acetone
- Purification by electrolysis in HNO<sub>3</sub> at pH 2.5-3.0 using the above electrode as anode in a fresh cell with another Pt cathode. <sup>90</sup>Y leaches out and gets deposited in the new cathode , which is taken out and pure <sup>90</sup>Y recovered by washing with dilute acid



### <sup>90</sup>Sr/<sup>90</sup>Y generators from BARC

#### 1. Supported Liquid Membrane(SLM) based Generators

Single stage generator demonstrated the potential of SLM for separation of <sup>90</sup>Y from <sup>90</sup>Sr. Two Stage generators yielded <sup>90</sup>Y of adequate purity. In sequential mode, 80% yields of <sup>90</sup>Y in ~9 h, at very high purity, (>99.999%) suitable for medical use could be obtained repeatedly


#### 2. Electrochemical generator

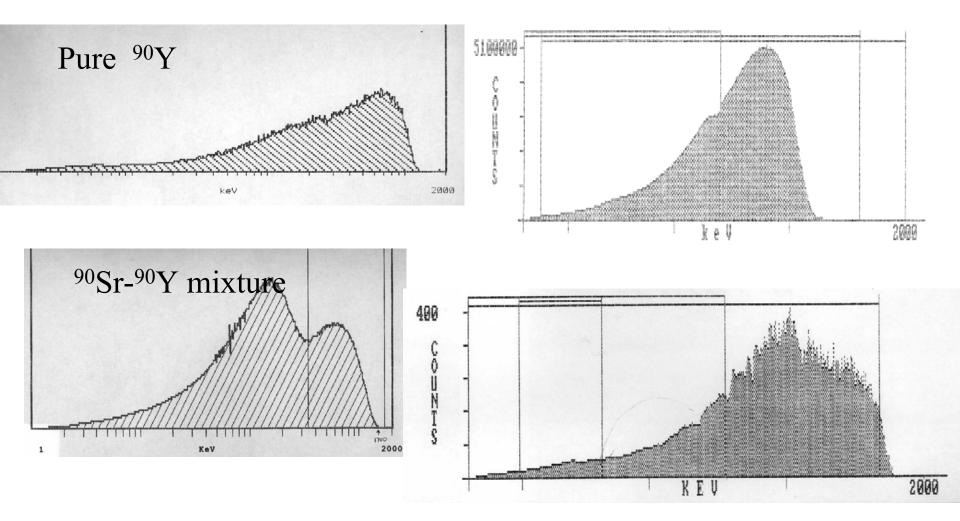
The EC technique could be shown to be effective as well as quick route to avail  ${}^{90}$ Y in high yields and purity; In 2 stages, > 95% yields of  ${}^{90}$ Y in ~90 min, at very high purity, (>99.999%) suitable for medical use could be obtained.



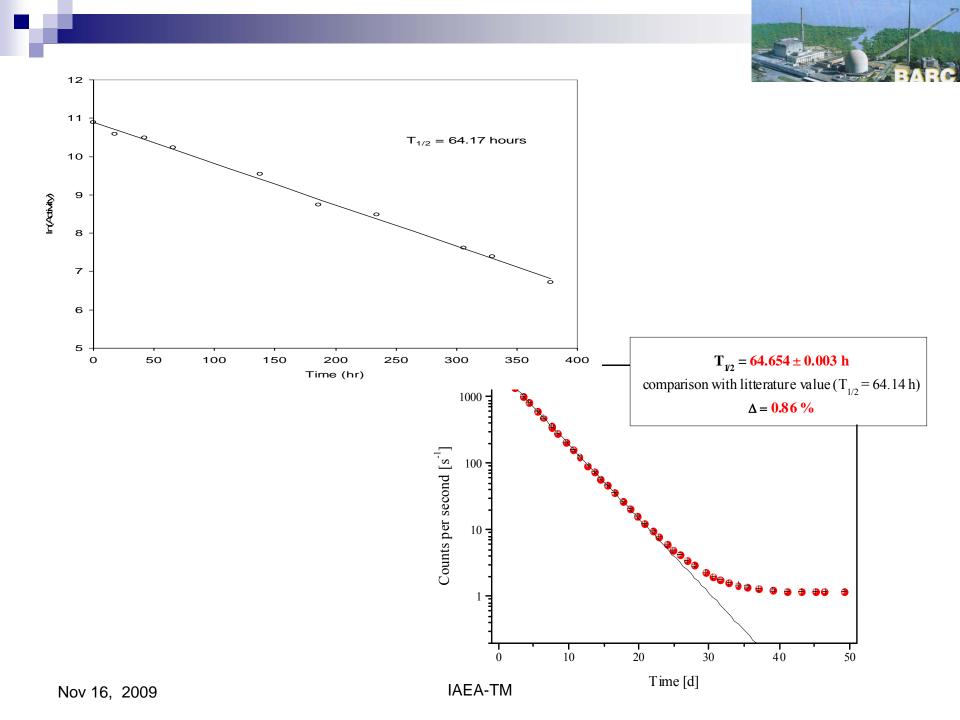
### <sup>90</sup>Yttrium Kamadhenu

- A <sup>90</sup>Sr/<sup>90</sup>Y generator based on Electrochemical technique demonstrated by us, has been automated and scaled up by a commercial manufacturer (ITD) under IAEA's initiative. Prototype ready to be deployed.
- Named after the eternally milk yielding mythological "Cow" "Kamadhenu"
- Holds lots of promise for long term supply of <sup>90</sup>Y at reasonable rates.




Nov 16, 2009

# Concerns about <sup>90</sup>Y Quality and QC


- <sup>90</sup>Sr, toxic bone seeking radionuclide stringent limits for body burden (74 MBq life time dose!); needs strict QC.
- Considering multiple treatments with ~ 37 MBq <sup>90</sup>Y each time, a limit of 10<sup>-4</sup>% has been set for <sup>90</sup>Sr content in <sup>90</sup>Y; i.e. just 2 ppm of <sup>90</sup>Sr content in <sup>90</sup>Y.
- This is a challenge, as both <sup>90</sup>Y as well as <sup>90</sup>Sr are pure β emitters with over lapping beta spectra, compounded with the need for sub-ppm levels of <sup>90</sup>Sr to be measured
- Most often, post-facto analysis done for records. Estimation of  $T_{1/2}$  of the <sup>90</sup>Y for a reasonably long period and/or measurement of <sup>90</sup>Sr in the decayed <sup>90</sup>Y, are resorted to.
- Uncertainties in these measurements are likely to exceed the desired limits of detection!!

Nov 16, 2009





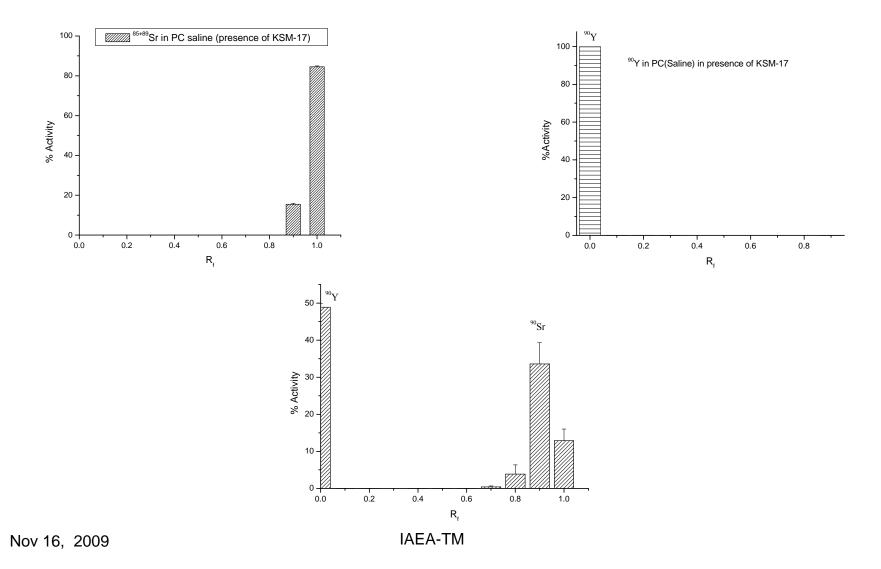
<sup>90</sup>Y contaminated with <sup>90</sup>Sr





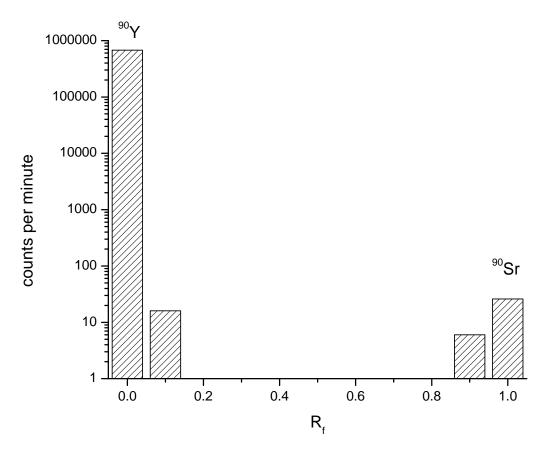
### **Our Efforts towards 'Real-time QC of** <sup>90</sup>**Y'**

- A novel sensitive real time quick reliable estimation of Bq levels (nCi) <sup>90</sup>Sr in MBq levels (mCi) of <sup>90</sup>Y (sub-ppm) developed and validated for the first time in the world by us!
- Principle: <sup>90</sup>Y retained at Rf 0 by a specific ligand in the PC paper while <sup>90</sup>Sr moves with Rf ~1, resulting in a clean, reproducible, quantitative separation. Combination of extraction using a solvent with paper chromatography, named as "Extraction paper chromatography": EPC




### **Extraction Paper Chromatography (EPC)**

U. Pandey, P.S. Dhami, P. Jagasia, M.Venkatesh, M.R.A. Pillai EPC technique for the radionuclidic purity estimation of <sup>90</sup>Y. Anal. Chem. 80 (2008) 801-807.


- A simple technique, adaptable in a hospital radiopharmacy set up.
- KSM-17, a established chelate for <sup>90</sup>Y, is placed at the point of application (Rf 0) on a PC strip and allowed to absorb & dry
- The test sample is applied to the chelate impregnated portion at Rf 0 of the chromatography paper
- The paper is developed in saline, dried and cut into 3 pieces (bottom, mid and top regions)
- <sup>90</sup>Sr which moves to the solvent front is estimated by placing the top region (Rf 1) in cocktail and counting by LSC for 60 minutes.

### A Glimpse at the Efficiency of EPC in Separating <sup>90</sup>Sr from <sup>90</sup>Y





#### Typical EPC pattern of <sup>90</sup>Y sample eluted from a generator





# **In Conclusion**

- <sup>90</sup>Y holds great promise as an important therapeutic radionuclide, owing to it's excellent attributes. This is evident from the large number of useful <sup>90</sup>Y based therapeutic radiopharmaceuticals that are already under use or under various stages of clinical trials/ demonstration/development.
- The possibility of real time QC analyses with adequate sensitivity, that can be performed at a hospital radiopharmacy set up, is expected to be a major factor in wider acceptability of <sup>90</sup>Y based radiopharmaceuticals from the regulatory angle.



# **Conclusion Continued** ..

- <sup>90</sup>Sr/<sup>90</sup>Y generator is a viable feasible option to avail
   <sup>90</sup>Y in quantities and quality, desirable for regular wide spread use in therapy
- Several generator concepts have been shown to be useful, among which the most suited are emerging as automated modules that could be set up at a hospital radiopharmacy.



# **Conclusion Continued** ..

However, there is an important concern which should be given proper attention. Using <sup>90</sup>Sr in large quantities is indeed a big challenge, as the tolerance for maximum body burden of <sup>90</sup>Sr is indeed very low. The possibilities of misuse/mischievous use of <sup>90</sup>Sr makes it necessary to have controlled access to and proper end disposal of <sup>90</sup>Sr and perhaps this makes it suitable for a central protected radiopharmacy rather than hospital radiopharmacy.



### Work related to <sup>90</sup>Sr/<sup>90</sup>Y generators carried out at BARC

- Work on <sup>90</sup>Sr/<sup>90</sup>Y generators started nearly 8 years ago at BARC, as a collaborative effort between us in the Radiopharmaceutical arena with Spent Fuel Reprocessing Scientists, to avail <sup>90</sup>Y via <sup>90</sup>Sr from ILW.
- The IAEA CRP on "Therapeutic Radionuclide Generators" from 2004-2007 happened at an opportune time. We had the good fortune of participating in this CRP and it's sequel on "Development of radiopharmaceuticals based on <sup>188</sup>Re and <sup>90</sup>Y for radionuclide therapy" that is on-going now.



### **IAEA's Vital Role**

These co-ordinated projects have been highly impactive and have enabled us to pursue this program with great zeal, resulting in very satisfying outcome for us as the participating lab - both in terms of demonstration of <sup>90</sup>Y as a viable therapeutic nuclide as well as in contributing to the success of the project as a reciprocation of the invaluable support from the IAEA.



# **IAEA's Vital Role**

- Similar situation of synergistic working between the participating lab and the IAEA yielding heartening results, is perhaps true to many other nations, for which we are all very grateful to the IAEA.
- In particular, the co-ordination among countries and enthusing the commercial manufacturer to develop automated system is a commendable achievement.
- It would be most gratifying if these co-ordinated work would lead to quicker regulatory approvals and deployment of <sup>90</sup>Y based radiopharmaceuticals for regular use! Nov 16. 2009 IAFA-TM

Thank You

