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Abstract： I n this repor t , P A N A M A code was used to estimate the CP 

performance under normal and accident condit ion. Under the normal 

i r radiat ion test ( 1 000。C 625 efpd, 10% F I M A )， f o r intact CP fuel， 

fai lure f ract ion is in the level of 10—7 • As-fabr icated SiC failed particles 

results in the th rough coatings failed particles much earlier than the 

intact particles does，OPyC layer does not fa i l immediately after 

i r radiat ion starts. The signif icant fai lures start at beyond the burnup of 

about 7% F I M A . 

Under the accident condi t ion, the calculated results showed that 

when the heating temperature is much higher than 1 850 °C , the fai lure 

f ract ion of coated part icle can reach the level of 1 percent. The CP fuel 

fails s igni f icant ly if i t has a buf fer layer th inner than 65 um，SiC layer 

th inner than 30 um. H i g h burnup CP need to develop small size 

kernel， th ick buf fer layer and th ick SiC layer. 
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1. Introduction 
A characteristic feature of a H i g h temperature gas-cooled reactor ( H T G R ) 

is the essential role of the T R I S O coated fuel particle acting as a t iny 

containment and serving as the pr incipal barr ier against radionuclide release 

under normal operat ion and accident condit ions. The qual i ty of the fuel relies on 

min imiz ing the number of fai lures of these particles dur ing reactor operation. 

The 10 M W H i g h Temperature Gas-cooled Reactor ( H T R - 1 0 ) bui l t in 

China is a modular pebble-bed type H T G R w i t h a thermal power of 10 M W . 

Spherical fuel elements are employed in the pebble-bed core. The H T R - 1 0 fuel 

element w i t h 60 m m in diameter consists of mat r i x graphit ic mater ia l , in wh ich 

T R I S O coated fuel particles are dispersed. The coated particle is composed of a 
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central U 0 2 kernel of 500 f im in diameter and four layers，which are ( 1 ) a low 

density porous buf fer layer , ( 2 ) an inner high-densi ty isotropic pyro ly t ic carbon 

(PyC) layer , ( 3 ) a si l icon carbide (S iC ) layer , and ( 4 ) an outer high-densi ty 

isotropic PyC layer. A b o u t 20 000 spherical fuel elements were produced for the 

H T R - 1 0 in 2000 and 2001. Each fuel element contained about 8 300 coated 

particles. The product ion batches showed a free U f ract ion of 1. 4 X 10~4 ； th is 

corresponds to one to four defective particles in each irradiated fuel sphere. 

The i r rad iat ion test of four H T R - 1 0 spherical fuel elements was carried out 

in the I V V - 2 M research reactor at Zarechnyy，Russia. A f t e r the burnup of the 

i rradiated fuel elements reached 100 000 M W d / t , a h igh temperature heating 

test w i t h the fuel element in capsule 5 was performed in the reactor. Post-

i r rad iat ion examinat ion indicated that at normal i r radiat ion condi t ion, the PyC 

and SiC layers of part icles kept thei r in tegr i ty . Howeve r , after the h igh 

temperature i r rad iat ion of the fuel e lement， t he fai lure f ract ion of coated 

particles in th is sphere reached 5. 8 % . The heating temperature was expected to 

be about 1 600 °C，but the actual fuel temperature was presumably much higher 

than 1 600 °C because the thermocouple to measure the fuel element fai led and i t 

became impossible to record and to cont ro l the temperature exactly. I n this 

repor t， the P A N A M A fuel performance code was used to f ind out what the 

actual temperature dur ing the heating test was by calculating the part icle fa i lure 

f ract ion under the test condit ions and tak ing the temperature as a parameter. 

2. Irradiation Samples and Irradiation Conditions 
The fabr icat ion technology of i r rad ia t ion samples includes U 0 2 kernel 

preparat ion by the gel prec ip i ta t ion method，PyC and SiC coating on the U 0 2 

kernels by the C V D process in a f lu idized bed and manufactur ing the spherical 

fuel element th rough a quasi-isostatic process. Tab. 1 shows the main 

characteristics of U 0 2 kernel and coated particles. 

I n order to assess the performance of the fabricated fuel e lements， four 

spherical fuel elements randomly sampled f r o m the f i rs t product ion batch (1000 

spherical fuel e lements) and placed into separate i r radiat ion capsules ( N o . 2 

th rough 5)，an in-pi le i r rad ia t ion test was carried out in the Russian I V V - 2 M 

research reactor. The i r rad ia t ion r ig contains 5 independent capsules, as shown 

in Fig. 1 ( a ) . The capsule 1 contained about 13 500 loose coated fuel particles 
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and 60 samples of graphi te mat r i x . The four spherical fuel elements were located 

in capsule 2 to capsule 5， respec t ive ly . Each capsule was independently-

contro l led and cont inuously swept and moni tored for volat i le f ission product 

release. The i r rad ia t ion temperature was adjusted by H e / N e m ix tu re gas. 

Tab. 1 Main characteristics of U02 kernel and particle coating of HTR-10 first loading fuel 

UO2 diameter / jum ‘ 498 

UO2 d e n s i t y / ( g / c m 3 ) 10. 9 

O / U rat io 2. 00 

Buf fer PyC layer thickness/卩m 95 

I -PyC layer th ickness/ fxm 42 

SiC layer th ickness/pim 37 

O-PyC layer th ickness/ j^m 42 

Buffer PyC layer density / ( g / c m 3 ) 0. 98 

I -PyC layer density / ( g / c m 3 ) 1. 86 

SiC layer density / ( g / c m 3 ) 3. 20 

O-PyC layer density / ( g / c m 3 ) 1. 87 

I -PyC and O P y C layer O P T A F 1. 03 

The nominal i r rad ia t ion temperature was 1 000 °C + 50 °C. The i r fast 

neut ron fluence for th is four capsules reached 1. 10 X 1021，1. 31 X 1021，1. 30 X 

1021 and 1. 06 X 1021 n / cm 2， respec t i ve ly . Dur ing the i r rad iat ion test? the 

temperature of the fuel element i n capsule 3 was increased to 1 200 °C for 200 

hours and to 1 250 °C for 200 hours，when its burnup reached 38 700 M W d / t 

and 57 000 M W d / t , respectively. 

For the fuel element in capsule 5， the i r radiat ion t ime was 625 efpd and the 

i r rad iat ion temperature was 1 000 °C 士 50 °C. A t the end of the normal 

i r radiat ion test , the h igh temperature heating test was carried out in the reactor 

for 22 hours by increasing the fast neut ron f luence and adjust ing the rat io of 

H e / N e m ix tu re gas. The post i r rad iat ion examinat ion program included 

dis integrat ion of the i r radiated spheres and determinat ion of the d is t r ibu t ion of 

sol id f ission products in the ma t r i x mater ia l along the sphere diameter， 

measurement of the fa i lure f ract ion of the loose coated fuel part icles obtained 
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Rotating unit of testing rig 
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hermocouples,TND 

Unit of vertical moving capsules 

Safety cork 

Outlet of gas carr ier 

W-Re thermocouple 

NiCr-NiAl thermocouple 

Coated fuel particles 
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Thermal insulation 

Inlet of gas carrier 

Fuel-free shell 

Fuel-containing zone 

Metal box 

W-Re thermocouple 

NiCr-NiAl thermocouple 

Gap between box and fuel element 

Graphite insert 

Spherical fuel element 

Cooling water 

Fig. 1 (a ) Irradiation test rig for HTR-10 fuel elements 

f r om the bal l d is integrat ion by the Irradiated Microsphere Gamma Analyzer 

( I M G A )，a n d examinat ion of the loose particles by ceramography. 

The measurement of R / B of 85 K r m of the irradiated fuel elements in these 

four capsules as a funct ion of the burnup is shown in Fig. 1 ( b ) . The free 

U levels of the fuel elements in the f i rs t product ion batch was 1. 4 X 10~4， i t 

means that there might be 1 〜4 defect coated fuel particles in each irradiated fuel 

element due to the manufacture. A f t e r i r rad ia t ion, the R / B of 8 5 Kr m of fuel 

elements in capsule 2 and capsule 5 are in the range of 5X10—6 to 8X10—5， the 

comparatively h igh R / B level was resulted f r om the higher manufactur ing 

defects. A l l the release rate curves kept small f luc tuat ion under average fuel 
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temperature，〜1 000 °C. A l i t t le ascension of the curves at a point of about 

53 000 M W d / t U came most l ike ly f rom the f luctuat ion of the i r radiat ion 

temperature. 

20 000 40 000 60 000 

Bum up of U (MWd/t) 

80 000 100 000 

Fig. 1 ( b ) R / B of 85 Krm of the irradiated fuel elements as a function 

of the burnup ( the dotted line represents the R / B of 85 Krm for heating test) 

Heat ing the fuel element in the capsule 3 to 1 200 °C for 200 hours w i t h the 

burn up of 38 700 M W d / t , and to 1 250 °C for 200 hours w i t h the burn up of 

57 300 M W d / t caused an increase of about one order of 8 5Krm release. When the 

temperature returned to 1 050 °C， the release rate was restored to the in i t ia l 

value. 

The i r radiat ing test ing of one fuel element in capsule 4 ended up early owing 

to something wrong in the gas loop of the capsule after irradiated t ime reached 

5 349 effective hours ( fue l burnup： 37 000 M W d / t ) . 

3. CP Fuel behavior under irradiation 
3.1 U02 kernel 

Point defects，gaseous and solid f ission products and oxygen are formed in 

kernel under irradiat ion，gas pebbles in fuel lead to the swel l ing of kernel and 

reduce the thermal conduct iv i ty of kernel. Exper imental measurement suggested 

that larger values of 0. 6 % 〜 1 . 5% AV/V produced for per atom percent 

bu rnup , at 10% F I M A , 6 % ~ 1 5 % increase in volume of kernel w i l l be happen. 

Large amount of swel l ing can reduce void volume in CP，under some case cause 
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kernel /coat ing mechanical interaction。 

The yield of Xe , K r gas is about 0. 31 per fission. 

Free oxygen can fo rm CO gas in CP fuel. For per fission，two oxygen atoms 

are released，about 1. 4 atoms are t ied up by rare earth fission products，o ther 

oxygen react w i t h carbon to produce CO. Under irradiation： 

l o g ( 0 / F ) 二 一 10. 08 — 8 500 /T j + 21og^ (1 ) 

Where is the i r radiat ion temperature ( k )， t i is i rradiat ion t ime (s) 

Dur ing heating ： 

l o g ( 0 / F ) 二一 10.8 - 8 500 /T i + 21ogTi — 

0.404 (10 000 /T h — 1 OOO/CTi + 75 ) ) (2 ) 

Where T h is heating temperature ( k ) 

Some fission products, especially Pd can migrate into contact w i t h SiC 

layer, causing i t to corrode. F rom experiment data，Pd corrosion rate (^ tm/h)： 

S = 2. 613 X 1 0 5 e x p ( - 2. 522 X 105/8. 314T) (3) 

Where T is the i r radiat ion temperature ( k ) . 

3. 2 Buffer layer 

Under i r radiat ion, Buffer layer w i l l be densification rapidly (less than 4% 

F I M A )， t h e n i t w i l l be fracture. The densification of buffer layer can result in 

the increase of void volume of CP. 

3. 3 IPyC and OPyC layer 

PyC is a br i t t le material，under i r radiat ion and temperature， i ts anisotropy 

factor ( B A F ) and volume w i l l be changed. Creep w i l l happen in this layer, creep 

can relax its internal stress. By the act of neutron，PyC l a y e r ‘ w i l l undergo 

shrinkage as a resu l t， tens i le stress formed. This shrinkage can produce 

compress stress in SiC layer which is useful to reduce the tensile stress in SiC. 

If a crack produced on the interface of IPyC/SiC，s t ress concentration w i l l 

exist at crack t ip on SiC internal face. Particle w i t h the cracked IPyC has a SiC 

layer in tension state. 

3. 4 SiC layer 

SiC has a high resistance against i r rad ia t ion， i t is considered to be the 

candidate for the f i rs t wa l l material in fusion reactor. A t h igh temperature 

(above 1 600 °C)， thermal decomposition of SiC w i l l occur. The decomposition 

temperature in di f ferent pressure，gas composit ion, should be calculated by 

HSC thermodynamic software. 
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4. Failure mechanisms of CP fuel 
CP fuel fa i lure comes f r o m manufacture and operating in reactor. N o w 

manufacture fai lure f ract ion is less than 10—5，deformed particles and missing 

coating layers are now rare，damage to part icles dur ing pebble fo rmat ion is rare， 

in-service fai lures received major interest. I n order to increasing burnup and 

neut ron fluence，set up V H T R (very h igh temperature gas cooled reactor)， i t is 

necessary to understand fa i lure mechanisms. 

Usual ly， in-service fa i lure includes： pressure vessel ( P V )， S i C failure， 

OPyC shrinkage fai lure，and， in teract ion of CP and graphite mat r i x . 

P V fa i lure means if gas pressure exceeds coating layer UTS， t he layer fai l . 

SiC fai lure includes： kernel migra t ion ( A m o b e e f fec t ) ； FP corrosion； 

cracks in SiC layer； thermal decomposition； U dispersion. 

Crack in SiC layer is main ly caused by IPyC crack, because in this case， 

stress concentrat ion w i l l exist at crack t ip on SiC internal face，as shown in 

Fig. 2，s tress concentrat ion speed up the g r o w t h rate of f laws. Fig. 3 is a 

cracked SiC layer , th is fa i lure is correlated w i t h IPyC crack. 

Intact TPyC Cracked IPyC 

g = rP lit 

Here， r is radius of the layer，P，gas pressure， t , layer thickness, 

P = PKV + Pxe + PcO (5 ) 

(4 ) 

<r(?)sic=2 130 MPa 

<7(r)sic=l 510 MPa 

ff(/)sic=-360 MPa 

«r(r)sic=105 MPa 

Fig. 2 stress in SiC layer 
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F i g . 3 C r a c k s i n S i C laye r 

5. PANAMA code 

P A N A M A code of CP dur ing i r rad ia t ion and under accident condi t ion ( i . e.， 

heat ing) w i t h temperature up to 2 000 °C is based on the pressure vessel model , 

where SiC layer represents the actual re tent ion barrier for f ission products. I n 

th is code 9 a part icle fai ls when stress in the SiC layer induced by the in ternal gas 

pressure exceeds the SiC strength. 

Fai lure f ract ion is given by 

t̂otal = 1 - ( 1 - ^ 0 ) ( 1 - ^ 1 ) d - (6) 

Where 电 and 0 2 correspond to P V fai lure f ract ion and thermal 

decomposit ion fai lure f rac t ion， respect ive ly . is the manufacture fai lure 

fract ion，at this t ime， is less than 10—5，so i n this code 少 0 = 0 is reasonable. 

I f no heating test a l ter i r rad ia t ion , or at the beginning of heat ing， t ime 

h=o, 02= 0. 

A t t ime t after the start of heating test at temperature T ， P V fai lure 

f ract ion is given by 

^ i ( ^ T ) = 1 — e x p [ — l n 2 U / ( a 0 ) m ] (7 ) 

represents stress at t t ime due to the gas pressure，cr0 is s t rength at the 

end of i r radiat ion，m is we ibu l l parameter. St rength values (pa) are scattered in 

a We ibu l l d is t r ibut ion. 

〜二 0.5rP/d0(l + ct/d0) (8) 

Where r is average radius of SiC layer，P is f ission gas pressure, c is 

corrosion rate as a func t ion of temperature, d0 is or ig inal thickness of SiC layer. 
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P = BRTXO. S l h + Q P D / W m V W k ) (9 ) 

Where B is burnup，R is gas constant, Fd is relative fract ion of f ission gas 

releases，OPF is number of oxygen atoms per f ission，Vm is molar volume of 

kernel，Vk is kernel volume，V{ void f ract ion, 50% for buffer layer. 

A f te r i r radiat ion, if CP is heated at 1 600 — 2 500 °C，particle w i l l fai l due to 

the thermal decomposition of SiC layer， fai lure fract ion is 

<P 2 ( t ,T) = l - e x p ( - ^ 0 (10) 

Where a、日 are empirical constant，$ is the action integral as a funct ion of 

temperature. In P A N A M A code，a is 1 X 1 0 " 4，a n d /3 is 4. 

6. Modeling of CP irradiation behavior 

Tab. 2 shows the geometry and key specification of the CP used in this 

report. I r radiat ion condition： The max imum burn up reached 10% F I M A , the 

max imum fast neutron fluencies is 1. 06 X 1025 n / m 2 . I r radiat ion temperature is 

(1 000 + 50) °C , i r radiat ion t ime is 625 efpd. 

Tab. 2 The geometry and specification of CP 

UO2 kernel 

Diameter ( p m ) 498 

Density ( g / c m 3 ) 10. 8 

O / U 2. 0 

CP 

Buffer layer thickness ( p m ) 95 

IPyC layer thickness (卩m) 45 

SiC layer thickness ((nm) 37 

OPyC layer thickness ( p m ) 42 

Buffer layer density ( g / c m 3 ) 1. 1 

IPyC and OPyC density ( g / c m 3 ) 1. 8 

SiC density ( g / c m 3 ) 3. 18 

O P T A F of PyC 1. 03 

6.1 Boundary conditions for calculations 

One of the most important input parameters for P A N A M A code is SiC 

strength and its weibu l l parameter. In this report we used several data of SiC 
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strength and weibul l parameter, and changed some CP geometry and heating 

temperature in order to get more knowledge about P A N A M A code and CP 

irradiat ion behavior. 

(1 ) Failure fract ion under normal i r radiat ion 

CP undergoes normal i r radiat ion, i. e.， i r radiat ion temperature is 1 000。C， 

i r radiat ion t ime is 625 efpd. Tab. 3 and Fig. 4 show the fai lure fraction. 

Tab. 3 Failure fraction and SiC boundary conditions(10% FIMA) 

SiC strength ( M P a ) Weibull parameter Failure fraction 

834 8. 02 8. 0 9 E - 9 

700 8. 02 3. 2 1 E - 8 

600 8. 02 9. 4 3 E - 8 

400 8. 02 1. 94E—6 

300 8. 02 1. 6 6 E - 5 

834 5. 7 1. 6 0 E - 6 

700 5. 7 5. 63E—6 

600 5. 7 9. 1 4 E - 6 

400 5. 7 1. 5 4 E - 5 

300 5. 7 3. 60E—4 

SiC strength (MPa) 
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F i g . 4 

I t can be seen that 

under normal i r rad ia t ion condit ion? a CP w i t h an intact SiC layer , even if the SiC 

layer has a low s t rength (300 M P a ) and a bad st rength d is t r ibu t ion ( w e i b u l l 

parameter is 5. 7) , the fa i lure f ract ion is s t i l l less than 5 X 10—4，because the 

assumpt ion of P A N A M A code is somewhat conservative? we can conclude that 

for a SiC intactness CP，at normal operat ing condit ion， fa i lure f ract ion can meet 

designed safety requirement. 

I n fact，S iC s t rength value exceeds 700 M P a and we ibu l l larger than 5. 7 can 

be t rusted by the present manufacture technology. Calculated stresses on each 

layer of a intact part ic le by K . Sawa showed that the max imum tensile stress on 

the SiC layer is almost zero when the burnup near 5% F I M A，w h e n i r radiat ion 

star ts，compressive stress acts on the SiC layer by fast neutron- induced 

shrinkage of the PyC layers, P A N A M A code does not consider the act of PyC 

layers， this is one reason resul ted the conversi t iv isms of th is code. Under th is 

normal i r radiat ion test， fa i lure f ract ion is in the level of 10—6 is reasonable. 

I n the case of CP w i t h as-fabricated SiC defects, or in the case of SiC failed， 

P A N A M A code assumed that the CP fai led as soon as SiC failed. Here we 

considered that OPyC layer is s t i l l in tact， i t served pressure vessel wa l l against 

in ternal gas pressure, Fig. 5 shows the fa i lure f ract ion of a CP w i t h fai led SiC 

I \ 一 we ibu l l 8.,02 s 
0,0 I~i 1 1 1 

600 700 800 900 

l . O x l O - 7 

8 0xl0—8 

6. .0x l0"8 

4 . 0 x l 0 " 8 

2 .0x10 - 8 

SiC strength (MPa) 

(b) 

F a i l u r e f r a c t i o n as a f u n c t i o n o f S i C s t r e n g t h 

fa i lure f ract ion is more sensitive to we ibu l l parameter. 
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layer. PyC layer st rength is 160 MPa，weibu l l parameter is 4. 

8,0x1 (T5 

6„0x l0 " 5 

0 2 4 6 8 10 
Burnup, F I M A 

Compared Fig. 4 w i t h tab. 2， i t is indicated that the as-fabricated SiC failed 

particles result in the th rough coatings failed particles much earlier than the 

intact particles does，OPyC layer does not fai l immediately after i r radiat ion 

starts. The signif icant fai lures start at beyond the burnup of about 7 % F I M A . 

0 , 0 
0 1 2 3 4 

Burnup, F I M A 

(b) 

F i g . 5 F a i l u r e f r a c t i o n f o r O P y C laye r as P V w a l l 

u n d e r n o r m a l i r r a d i a t i o n 

2.0x10"5 
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(2 ) Fai lure f ract ion under accident condi t ion 

I f SiC s t rength is 834 M P a , we ibu l l parameter is 8. 02, after i r rad iat ion at 

1 000。C for 625 efpd, then heating the i r radiated CP fuel at 1 570。C for 200 

hours? Fig. 6 shows the relat ionship between fai lure f ract ion and heat ing t ime. 

A t the end of 200 hours? fa i lure f ract ion remains below 5. 3 X 10~4. 

I n this report we made an assumption： SiC st rength is not 834 M P a , and 

the s t rength d is t r ibu t ion is not good，here we regarded i t as 5. 7. A f t e r 

i r radiat ion at 1 000。C for 625 efpd, burnup reached 10% F I M A , CP fuel 

underwent heating test f r o m 1 570 °C to 2 000 °C and keep CP in th is 

temperature for 5 hours. The to ta l heating (anneal ing) t ime is 22 hours. Fig. 7 

shows the calculat ion results. 

F r o m Fig. 7，we chose some suitable SiC s t rength and heating temperature， 

make the CP fai lure f ract ion fa l l i n 10~2 level. 

I t can be seen f r o m Fig. 8， i f the heating temperature is 1 570。C，and the 

SiC s t rength less than 425 MPa， f a i l u re f ract ion w i l l reach 10—2• When the 

heating temperature higher than 1 900。C，even the SiC has a h igh qual i ty 

(s t reng th is 834 MPa)， f a i l u re f ract ion is s t i l l reached 10~2. 

Normal ly, the accidental temperature in H T R is below 1 600。C， i n this 

condition, when the SiC strength less than 425 MPa, failure fraction w i l l be 10—2• 

5.0x10"4 

0 20 40 60 80 100 120 140 160 180 200 

/(h) 

F i g . 6 T h e r e l a t i o n s h i p b e t w e e n f a i l u r e f r a c t i o n a n d h e a t i n g t i m e 
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0,00 

400 500 600 700 800 900 1 000 
SiC strength (MPa) 

⑷ 

Heat ing 5 hrs 
We ibu l l 5.7 

The probability is： 420 MPa /1 570。C，570 MPa/1 700 °C，700 MPa /1 800 °C. 

Fig. 8 is the some temperatures and values of SiC strength which 10—2 failure fraction 

can be obtained. Large experimental data indicated that when the heating temperature 

above 1 800 °C，PANAMA code showed good agreement wi th the CP fuel irradiation 

data. Below 1 800 °C，the attr ibution of SiC thermal decomposition to CP fuel failure 
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is not so large like the predication by P A N A M A code，and annealing can relax tensile 
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W e i b u l l parameter 5,1 

/ 一一 

/ 一 一 C — • ‘ ‘ I | | I 
4 8 12 16 20 

Heat ing t ime (h) 
⑷ 

Heat ing t ime (h) 

(b) 

F i g . 8 p o s s i b i l i t y o f f a i l u r e f r a c t i o n reaches 10—2 

stress in the SiC layer, this is another reason resulted the conversativisms of 

P A N A M A code. On the other hand, SiC strength is at least 700 MPa，so we can 

conclude that for an intact CP，only when the heating temperature is 1 800 °C or above 

1 800 °C，failure fraction can be larger than 1X10—2. 

I f CP exist as-fabricated SiC defects， through-coat ing fa i lure f ract ion is 

decided by the s t rength of OPyC layer. Fig. 9 shows the fai lure f ract ion changes 
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as the heating t ime. A t the end of heating test， fai lure fract ion is 1. 34 X 10 

1.2X10'1 

l.,0xl0"J 

8.,0xl 0"2 

6.0X10"2 

4 . 0 x l 0 " 2 

2.,0xl0"2 

(3 ) Effect of CP geometry on fai lure f ract ion 

Boundary conditions； 

I r rad ia t ion time： 625 efpd 

I r rad iat ion temperature： 1 000 °C 

Fast neutron fluence： 2. 1 X 1025 n / m 2 . 

Burnup： 10% F I M A 

Heat ing temperature： 1 600。C 

Heat ing time： 200 h 

SiC strength： 834 MPa 

Weibu l l parameter： 8. 02 

Fig. 10 shows the relat ionship between CP geometry and fai lure fract ion. 

Because P A N A M A code did not consider the effect of OPyC layer，the changing 

of the thickness of OPyC layer， fai lure f ract ion has no change. 

The i r radiat ion behavior of IPyC layer is not be treated in P A N A M A code， 

but the radius of SiC layer decreases w i t h the decreasing of IPyC thickness 9 

tensile stress in SiC layer is w r i t t e n as r P / 、 2 t )， i f r decreases，t increase？ 

tensile stress w i l l be reduced，as a resu l t , fai lure f ract ion reduces. So the fai lure 
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f ract ion decreases by the decreasing of IPyC thickness or increasing of SiC 

thickness. 

Fig. 10 indicated that there are t w o key parameters affect fa i lure f rac t ion , 

one is SiC layer th ickness， the other is buf fer layer thickness. The calculated 

results predicted that at accident condi t ion， the CP fails s igni f icant ly i f i t has a 

buf fer layer th inner than 65 SiC layer th inner than 30 ^m. H i g h burnup CP 

need to develop smal l size kernel， th ick buffer layer and th ick SiC layer。 

The P A N A M A fuel performance code was used to estimate the CP 

performance. Under the normal i r rad iat ion test ( 1 000 °C 625 e f p d，1 0 % 

F I M A ) ， for intact CP fuel， fa i lure f ract ion is in the level of 10~7. As- fabr icated 

SiC fai led part icles results in the th rough coatings fai led particles much earlier 

than the intact part icles does，OPyC layer does not fa i l immediate ly after 

i r radiat ion starts. The signif icant fai lures start at beyond the burnup of about 

7% F I M A . A t accident cond i t ion , 5 hours， fo r an intact CP，on ly when the 

heating temperature is 1 800 °C or above 1 800 °C，fai lure f ract ion can be larger 

than 1 X 10—2; I f CP exist as-fabricated SiC defects， through-coat ing fai lure 

f ract ion is 1. 34X10—1 . 
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Under heatup accident condi t ion， the CP fuel fails s igni f icant ly if i t has a 

buffer layer th inner than 65 fxm，SiC layer th inner than 30 um. H i g h burnup CP 

need to develop small size kernel， th ick buf fer layer and th ick SiC layer. 

P A N A M A code is a very simple but useful tool for predict ion CP fuel 

i r rad ia t ion, we can use i t to design CP geometry? plan i r radiat ion test，and guide 

us to observe CP dur ing PIE. 

Note 

Th is wo rk was performed by Dr . Tongxiang Liang dur ing his v is i t in C E A 

(Cadarache) f rom November，2003 to 0ctober，2004 
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