PARAMAGNETIC CENTERS FORMATION UNDER RADIOLYSIS OF CRYSTALLINE RbNO₃ AND CsNO₃

V. Anan'ev and V. Pak

Kemerovo State University, Krasnaya 6, Kemerovo, 650043, Russia

The goal of the present paper is to study the paramagnetic centers formation under γ-radiolysis of crystalline RbNO₃ and CsNO₃ at 300 K and their decay under the heating to develop the mechanism for radiolysis products formation.

The RbNO₃ and CsNO₃ crystals were irradiated with 60 Co γ -rays at ~ 310 K. The irradiated RbNO₃ and CsNO₃ crystals were thermal annealed at 393 K and 423 K, respectively.

 O^{\bullet} and NO_2^{\bullet} centers are registered in ESR spectra of irradiated crystals. The kinetics of O^{\bullet} accumulation has a nonlinear character, when for NO_2^{\bullet} it is linear. The values of O^{\bullet} initial radiation chemical yield $-G(O^{\bullet})$ are equal to 0.01 and 0.14 (100 eV)⁻¹ for RbNO₃ and CsNO₃, respectively, when $G(NO_2^{\bullet}) - 0.03$ (100 eV)⁻¹ for studied nitrates. The thermal annealing of irradiated samples results in the drop of the initial centers with simultaneously appearance of the O_3^{\bullet} , but not O_2^{\bullet} .

The initial product of radiolysis of the nitrates is the complex $[xNO_2^-...O_x]$. Because $O_3^{\bullet-}$ formation from $O^{\bullet-}$ under thermal annealing is possible if the molecular oxygen formed under irradiation only, then x=2. Therefore $O^{\bullet-}$ formation is not due to the localization of the electron on the atomic oxygen of the complex. The complex $[NO_2^{\bullet}...O^{\bullet-}]$ may be formed under the dissociation of the excited nitrate ion formed under irradiation. Hence, the formation of that complex in crystalline nitrates is at variance to the fact that $G(O^{\bullet-})$ disagree with $G(NO_2^{\bullet})$.

The mechanism for the paramagnetic centres formation under the radiolysis of RbNO₃ and CsNO₃ crystals and the heating can be written as follows.

Under irradiation: $NO_3^-+e \rightarrow NO_3^{\bullet^2} \rightarrow [NO_2^-...O_{\bullet}^-]; 2NO_3^-+h \rightarrow (NO_3)_2^{\bullet} \rightarrow [NO_2^-...O_2...NO_2^-]$

Under the heating: $[NO_2 \bullet ... O_2 ... NO_2^-] \rightarrow [NO_2 \bullet ... NO_2^-] + O_2$; $O_2 + [NO_2^- ... O_2^-] \rightarrow [NO_2^- ... O_3^-]$

Acknowledgements: This research was conducted with financial support from Federal Target Programme "Scientific&Scientific-Pedagogic Manpower of Innovation Russia" 2009-2013 years.