Multichannel quantum defect study of ${}^{3}\Pi_{u}$ and ${}^{3}\Sigma_{u}$ states of H₂: rovibronic energy levels

H. Oueslati³, M. Telmini^{2,3} and Ch. Jungen¹

¹Laboratoire Aimé Cotton du CNRS, Université de Paris-sud, 91405, Orsay, France. ²National Center for Nuclear Science and Technology, Sidi Thabet Technopark, 2020, Ariana, Tunisia.
³LSAMA, Département de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092, Tunis, Tunisia. e-mail : Houaida.Oueslati@e ac.rnu.tn

Introduction

Multichannel quantum defect theory is applied to calculate the rovibronic energy levels of the $\mathbf{1}_{1}$ and $\mathbf{2}_{1}^{*}$ states of \mathbf{H}_{2} . First, a complication of the best available experimental term values for these levels was prepared [1,4]. Second R-dependent quantum defect matrices for the $\mathbf{1}_{1}$ and $\mathbf{3}_{2}^{*}$, were obtained from *ab initia* potential energy curves and used in an *ab initio* MQDT calculation. The rovibronic MQDT calculation are defined in new manner such as implemented in [7,8]. Thirdly we use the frame transformation method combined to the multichannel quantum defect theory [2] to calculate the rovironic reaction matrix. The results obtained in this study provide for the first time a fully ab initio

quantum defect theory [2] to calculate the rovironic reaction matrix. The results obtained in this study provide for the first time a fully ab initio characterization for all measured rovibronic bound level energies of the "1U", "2u" and "2g" states of H₄. The agreement with the best available experimental levels [5] and previous theoretical calculations (where available) ([2,3]) is good. The quantum defect matrices thus obtained are also used to describe : "The grantscatcher study of the 2pt c "1L, state by the low-lying 2pt b $^{\rm TS}_{\rm S}$ state. "The transfer first study reprints the low-lying 2pt b $^{\rm TS}_{\rm S}$ state. "The calculate of the c $^{\rm TS}_{\rm L}$ state. "The calculate of the c $^{\rm TS}_{\rm L}$ state. "The calculate the transition dipole moments (d,k) "flu \rightarrow a $^{\rm TS}_{\rm s}$ and (e,f) $^{\rm TS}_{\rm Lu} \rightarrow a^{\rm TS}_{\rm s}$."

 $\begin{array}{l} & 121 \\ & 121 \\ & \underline{N_{1},p_{1}',N_{1}'} = \int dR(n_{1}^{*}N_{1}^{*}| \left\{ \sum_{A} |(RA) \mathcal{K}_{0}^{*}(R)(|RA| \right\} | p_{1}^{*}N_{1}' \right) \\ & \text{of } MQDT resides in the fact that the transformation between the } \\ & \text{ducoupled Rydebrg electron is incorporated in the theory} \quad \text{and is } n \text{ the bra-kets} : (n_{1}^{*}N_{1}'| |RA) \\ \end{array}$ к

c (2 p +)' d (2 p +)' k (4 p +)' + (2 p +) b f (4 p +)

Ē

N=3 Obs (cm⁻¹) [5]

95242.41

97567.18

99770.37

101855 10

es for c' (2pm) state

N=3 Ohs (cm⁻¹) [5]

106840.90

108894.49 110812.46

UNIVERSITÉ

80

ONS

defects

N=1 Obs (cm⁻¹) [5]

94941.72

97280.50

99497.28

101595 34

Con

N=1 Obs (cm⁻¹ [5]

06682.01

108744.710

110671.99

To avoid the appearance of the unphysical solutions with the μ quantum defect (s and c Coulomb functions) and the energy dependence problem in H₂ using η -defect (f and h Coulomb functions) [4], a new approach is implemented giving Coulomb functions (s and \tilde{c}) and associated quantum defects β which are found to have smooth R- and energy-dependences [7,8].

6

(5 c)*

bda - type doubling in the ${}^{3}\Pi_{u}$ + symmetry of H₂

Calculation of the lifetimes of predissociative level $c^+ (2p\pi) {}^3\Pi^+_u$ of H_2

The rovibronic levels obtained for triplet symmetries (${}^{3}\Pi_{u}$ and ${}^{3}\Sigma_{v}$) of H_{2} with the frame transformation method are used to calculate the first predissociative lifetimes of the rovibronic levels of c^{*} ${}^{3}\Pi_{u}$ state by the dissociative state ${}^{5}\Sigma_{v}$.

and hyperfine structure of the N=1 (of orthohydrogen) and the gen) rotational levels of the $c^2\Pi^*_{\ u}$ state will be compared to the gy levels of Lichten [8]. The fine stri N=2 (of para

112461.150 114146.98 112592.62 114104.720 115623.69 114230.49 115581.82 116917.27 115699.54 for e (3pg) state d [5] and ca

N=2 Ohs (cm⁻¹ [5]

95062,46

97395.64

99607.08

101699 87

N=2 Obs (cm⁻¹) [5]

106735.13

110718.92

112505.08

1 [5] and cal

The transition dipole moments in the Coulomb approximation as a function of the internuclear distance R

transition moment D as a function ine) and ab initio computations ion moments, by using the Co is of plasma of hydrogen. tion of the internuclear distance R : ou of Ref [6] (dashed line).These calcula oulomb approximation, will be useful for

Conclusion

CONCLUSION The quantum defects used in this work are defined in a new manner, extending the approach implemented in [7], they are characterized by smooth R-and energy dependences, a feature which is important for the rovibronic frame transformation in a full rovibronic MQDT [2]. We have performed for the first time a fully ab initio characterizzion for all measured rovibronic bound level energies of the ³IL, and ³D₂, channels. We have used the ab initio quantum defects and the frame-transformation technique to calculate ro-vibranic energy levels. The quantum defect matrices thus obtained are also used to calculate the transition diplote moments (d, k) ³IL₀ \longrightarrow a ³D₂ and (e, f) ³Z₂ \longrightarrow a ³D₂ in the Coulomb approximation as a function of the internuclear distance R. Further developments in prograss involve: * The first predissociative lifetimes of the rovibronic levels of cs ³IL, state. * The first predissociative lifetimes of the rovibronic levels of cs ⁴IL, state. * The first predissociative lifetimes of the rovibronic levels of cs ⁴IL, state. * The first predissociative lifetimes of the rovibronic levels of cs ⁴IL, state. * The first predissociative lifetimes of the rovibronic levels of cs ⁴IL, state. * The first predissociative lifetimes of the rovibronic levels of Lichten [8].

* Dipole transition moment D as a function of the internuclear distance R.

References

[1] http:// w ol/ftr /ifiz/l

- http:// www.phys.uni.torum.pl/ftp/publications/ffra/tuwo/
 http:// www.phys.torum.pl/ftp/publications/ffra/tuwo/
 http:// www.phys.torum