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Abstract

The analytic weighted Lipschitz algebra A, is the Banach algebra of all analytic functions on

the unit disk I, that are continuous on D and such that

|f(2) = f(w)]
futp wlz—w) ST
z#w

where w is a modulus of continuity. We give a new characterization of outer functions in A,
by their modulus in T. As application, we obtain a refinement of Shirokov’s construction of
outer functions in A, vanishing on a given w—Carleson set. We obtain also an extension of

Havin-Shamoyan-Carleson-Jacobs Theorem to an arbitrary modulus of continuity.
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1. INTRODUCTION AND STATEMENT OF MAIN RESULT

Let w be a modulus of continuity, i.e., a nondecreasing continuous real-valued function on [0, 2]

with w(0) = 0, w(1) = 1 and such that ¢ — w(t)/t is a non increasing function. It is called fast if

/S @dt < Cy, w(s), s €]0,2], (1.1)
o t
and slow if

/2 %dt < cw@, s €]0,2], (1.2)

for some constants C,, and ¢, > 0 independent of s (see [4]). Associated to such modulus of

continuity w we define the following
w*(t) ;== inf{u € [0,1] : w(u)="1t}, t € [0,1].

It is clear that w* is an increasing function such that w(w*(t)) =t and w*(w(t)) < t, t € [0, 1].
Since w(t)/t is non increasing, then w*(¢)/t is non decreasing.

Now, let D be the open unit disk of the complex plane and T its boundary, and denote by A(D)
the space of analytic functions on I that are continuous on D). For given continuous function f

defined on a compact subset G of D and given modulus of continuity w, we set

— p Y S)

wG(f) E wis U.)(’Z — w’) .
2w

The analytic weighted Lipschitz algebra A, of D consists of all functions in A(D) satisfying
w(f) < 400, ie,

A, = {f € AD) : wi(f) < +oo}.
For an arbitrary modulus of continuity w, Tamrazov [10] proved that

wi(f) <400 = wr(f) < +oo, f e AD). (1.3)

A complex analytic proof of (1.3) can be found in [1, Appendix A].

Let h: T — RT be a nonnegative continuous function satisfying
1
o [1oeh©ldg] > o, (14)
T Jr
We associate to h the outer function Oy, defined by

On(2) := exp{u, (2) + v, (2)}, z €D,

where
1 E+z
w(2) = 5= [ Re(32) logh©)lagl, e,
and v, is the harmonic conjugate of the harmonic function u, given by

1

0,(2)i= 5 TIm(éj—j) logh(¢)|de|,  zeD.
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Since h is continuous and satisfies (1.4), then |Oy| = exp{u,} is also continuous on D and
On, € H*°(D) is a bounded analytic function. The non tangential limits of v, exist and coincide
a.e on T with the following function (see [5, page 99])

o () = — lim 1 log h(6 +t)
T TN Jecyer tan(20)

where h(s) := h(e®), s € [0,2n], and Ej, # @ is the zeros set of h.

dt, % ecT\Ey, (1.5)

We suppose that h satisfies
Yr(h) < +oo, (1.6)

for all (6,s) € [0,2n[x [0, 27| such that e € T\ E,, 0 < s < ¢*(3 (21)),

M/ MO MOy < 0 ), (17)

and

1 GED) O+ 1) x h(8 — ) — h2(0)|
W/ 2

where 9 is a modulus of continuity and Cp, > 0, ¢, > 0 are constants independent of both § and

dt < ¢ @ (1.8)

s. In section 2.2 below, we will give simple examples of functions satisfying the conditions (1.4),
(1.6), (1.7) and (1.8) with respect to an arbitrary modulus of continuity. It is easy to check that
if 4 is fast then (1.7) follows, while (1.8) holds when ¥ is slow. We set

Oh(f) = { g’(g) eXp{Z"Uh (é)}v g g gh\‘Ehy (1.9)

In the proof of Lemmas 3.5 and 4.1 below, we will see that the conditions (1.4), (1.6), (1.7) and
(1.8) ensure the continuity of v, on D\ Ej and by consequence the continuity of Oy, on D.

Dyakonov [3| and Pavlovi¢ [7] have proved the following equivalence
wp(f) <400 <= wp(|f]) <+oo,  fe AD), (1.10)

where w is supposed here to be both fast and slow modulus of continuity. In the case when h
satisfies (1.4) and (1.6) and also w is both fast and slow, Shirokov [8] showed that Oy, € A, if
and only if (see [3, Theorem Al)

On(z

sup ‘log | < 400 (1.11)

z€D
Mz2zw(1-|z|)

where
M, :=max{h(§) : £€€T, |£—2 <2(1—|z|)}, z € D.
In Section 4.1 we have to prove our main result (Theorem 1.1 below). For exact statement,

we set

‘1 og h(<)|
= d T
ah(g) /]1‘\\1/5 ’C 6‘2 | C| 56 ;
with

—(CET €< (Gpo)l  €ET,
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Theorem 1.1. Let h : T — RT be a continuous nonnegative function satisfying (1.4), (1.6),

(1.7) and (1.8). Let p > 1 be a real number and w be an arbitrary modulus of continuity such

that
w(t) > (), t €[0,2].
The following four assertions are equivalents
1. O) € A,
2. wp(|O})]) < +oo.

3. There exists a real number 6 > 0 such that

|On(2)]
sup { sup |1og S|} < oo,

where

De:={z€D : [z—¢ <w*(6h°(€))}, £eT.

h*(€)

e (L a1

In particular, when p = 1 and w = ¥ is both a fast and slow modulus of continuity, the

equivalence between 1 and 3 of Theorem 1.1 gives a refinement of the above Shirokov’s result
(1.11). Also, in this particular case, the equivalence between 2 and 3 gives a connection between

the above Dyakonov’s result (1.10) and Shirokov’s one.

2. SOME APPLICATIONS

2.1. Havin-Shamoyan-Carleson-Jacobs Theorem. We say that a modulus of continuity w
is p-slow if the following condition holds

w(t?)

) s >0, 2.1
tel[o,z] wP(t) — "l (2.1)
where 1 < p < 2 is a real number. As an example, we can take x(t) := 1/(1 + |log(¢)|) and
wa(t) :=t% 0 < a < 1. Tt is easy to check that x is p—slow and not fast, while w,, is fast but not
p—slow for any 1 < p < 2.

As a simple consequence of Theorem 1.1, we have the following

Corollary 2.1. Let h : T — R* be a nonnegative continuous function satisfying (1.4), (1.6),
(1.7) and (1.8). Suppose that there exists a real number 1 < p < 2 such that v is p-slow. Then
O € Ay and O, € Ay, , where

Do) = r(t),  tel0,2).

The particular case of p = 2 and v being fast and slow (take for example 1) = w,,) in Corollary

2.1 gives a simple proof of the Havin-Shamoyan-Carleson-Jacobs Theorem (see for instance |3, 6]).
4



Proof of Corollary 2.1: Using Theorem 4.1, we have

OF € Ay — sup - hp(f)_l < 400
ge P(min{l, a; " (§)})
<~ sup — hE) < 400
€T o (min{1,a; " (€)})
— Op € Ay, .
We fix £ € T\ Ep,. It is easy to show that
Ch
an(€) < — B (2.2)
* £ 2
(v ()
where ¢y, is a constant independent of £. Using (2.1) and (2.2), we derive
h(€)

WE) = (@Un(h) v (g )

(2¢r(h))? . &) 2
e (0 Ggm)’)

< cpp (min{l,a;," (6)}),

IN

where ¢, j, is a constant independent of §. This finishes the proof of Corollary 2.1.

2.2. Boundary zeros set of functions in A, . Let E C T be a closed set of zero Lebesgue
oo
measure. It is clear that we can write T\ E = |J 7y, where 7, = (an,b,) € T \ E is an open arc
n=0
joining the points ay, b, € E. The closed set E is called w-Carleson if it satisfies the following
condition
Z\bn—an\logw(\bn—an]) > —00. (2.3)
neN
In the case when w = w,, Carleson [2] proved that the condition (2.3) is necessary and sufficient

for E being zero set of a function f € A, \ {0}. In [8, 9], Shirokov obtained a generalization
of Carleson’s result to an arbitrary modulus of continuity. However, Shirokov’s construction is
different and much more complicated than Carleson’s one. Namely, he proved that if there exists

a set of real numbers R := {r,, >0 : n € N} satisfying some properties then Oy, € A, where
’5 B bn’2‘§ - an’2

n 9 e ny
hR(S) = " ’bn - an’4 g 7
0, ¢cE.

In this section we give a refinement of the above Shirokov’s construction. So, let hg be a function
defined on T as

§—bnl|l€ —an
W(Mn‘“nD%, £ € T,

0, § €k,
where w is a modulus of continuity. Using the equality
b (b—t)(t—a)
log ——————dt =2(a—b
/a Og (b _ a)2 (CL )7

it is easy to check that hg satisfies (1.4) if and only if E is an w-Carleson set. From Corollary

he(§) ==

2.1, we obtain the following one:



Corollary 2.2. Let w be a p-slow modulus of continuity and E C T a closed subset of zero
Lebesgue measure. In order that OZE belongs to A, it is necessary and sufficient that E is an

w—Carleson set.

Proof. The necessary condition follows from Jensen’s formula. Thus we have to prove the
sufficient condition. For this, let E C T be a closed subset of zero Lebesgue measure and assume
that E is an w—Carleson set. Then the continuous function hg on T satisfies (1.4). A direct
computation shows that hg < 1 and that wr(hg) < 2. Note that the function kg : 6 € [0, 27 —

he(e?) is a smooth function on T \ E. By a simple calculation, we obtain
w([bn — an|)

sup kp(0) < C , neN, (2.4)
and
” bn — Qp
sup kg(f) <c w(lbn = an]) neN, (2.5)

b — anl?
where C' > 0 and ¢ > 0 are absolute constants. Using the fact that w(t)/t is non increasing,
we deduce that (2.4) implies (1.7) and that (2.5) implies (1.8). From Corollary 2.1, we conclude
that OZE € A,,. The proof of Corollary 2.2 is completed. O

3. TECHNICAL RESULTS

Let h : T — R be a continuous nonnegative function satisfying conditions (1.4) and (1.6).
Fix two distinct points ¢ = € and ¢ = € such that 8 < ¢, (6,¢) € [0,27[x[0,27[. We define
[€,¢] €T to be the following closed arc joining the points £ and ¢

[€,¢):={e” : 6 <5<}

and we set L PEQ Tog ZEngg ~log ZESD+3
An(€,0) = | sin { lim — - -t ),
p(6,¢) = | sin { lim / tan(Lt) J
where
. h(o)
M (€,¢) = inf " .
h(8:0) oe[ﬁ,dw (ZW(h))

Note that if Ay (&,¢) > 0, then [£,{] C T \ E;. In this section, we prove the following

Proposition 3.1. Let h: T — R™T be a continuous nonnegative function satisfying the conditions
(1.4) and (1.6), where v is an arbitrary modulus of continuity. We suppose that |v, (§)| < 400,
for all £ € T\ Ey, (see (1.5)). Let p > 1 be a real number and let w be an arbitrary modulus of

continuity such that

W) > (), te (0,2 (3.1)
Then, O € A, if and only if the following two conditions hold
hP
() < +o0, (3.2)

cer w(min{1, a; (6)})
hp(§7 C)Ah” (67 C)
ol w(e—q))
6

< 00, (3.3)



where h(¢, () = UéI[lffC] h(o).

It is not hard to check that conditions (1.7) and (1.8) together implies (3.3), see Lemma 4.1.

3.1. Proof of Proposition 3.1. Let h: T — R™ be a continuous nonnegative function satisfy-
ing conditions (1.4) and (1.6). We fix a real number p > 1 as well as a modulus of continuity w

satisfying (3.1). For proving Proposition 3.1 we show a series of technical lemmas.

3.1.1. Necessary conditions. We begin by the following lemma, which gives rise to the nec-

essary condition (3.2) of Proposition 3.1.

Lemma 3.2. Let h: T — R" be a continuous nonnegative function satisfying conditions (1.4)

and (1.6). If

[On(2)]
sup { s [1oe | < o o4

where
De={z€D : |z—¢ <w*(0h°())}, £eT,
and § < 1/(4r(h))” is a positive number. Then
hP(€)

e omin{La, [©)))

Proof. We have

2
z
log |0 (2 2W/ = ’ ‘ hOldC,  zeD.

Note that

h(§) < Yr(h)p(d(§, En)) < 2¢1(h), §eT, (3.5)

where d(§, E}) is the Euclidean distance from the point £ to Ej,. Now, we fix a point £ € T \ E},
such that a, () < 1. It is clear

1 1— |22 h(¢)
log —=<[d(]
21 Jovwe 1€ — 22 h(E)
On(z)] 1 / -2 h(¢)
log - — log d¢ z € D. 3.6
TR e Ll 3
We have
1 1—1z)2, () log 2 1—|z)?
— log d¢| < / d¢| <log2, zeD. 3.7
27 Ju 1 2P Eh@ = 2 fo, o2 7
Combining (3.4), (3.6) and (3.7) yields
— 2>, h(C)
log dg‘gc, 2 €Dy, 3.8
‘%/m =P Bl = ¢ 39
where ¢; > 0 is a constant independent of £. By a simple calculation
z w —
2 —wl? =[]z = Jw|® + |ow|| 5 — =%, zweD. (3.9)
I
Note that from (3.1)
w*(t) < Y*(t), t €10,1]. (3.10)

7



We set zg := (1 — w*(6h*(€)))&. It is clear that z¢ € De. From (3.5), (3.10) and the fact that ¢*
is non decreasing, we deduce that 1 — |z¢| < %1/)*(2%5&)) = A (§). Hence, by using (3.9),

- <Ic- =P <2AC-€P, CeT\ ¥ (311)

Now, using the fact that ¢ (t)/t is non increasing, we see that under the assumption that h({) >
h(§) and ¢ € T\ W¢, we have

o gy = s (Mg )
< log(%r(h)%Jrl)
< lox (i 7+ )
Consequently
)\h(g) ( ) )\h( ) ‘f C‘
/hé\i@ [ TGR /c-gmh RO wa R
N 62/@ k%tdt’ (3.12)

where ¢z > 0 is an absolute constant. From (3.8), (3.11) and (3.12), we deduce

o @m© = [ o e
3

L), Q)
= 2/“% eI
el h(Q) ()

2 1 d 4 1 d
< o [ el /,L(g;;}f@ =P e ™!
< 4me; 4¢3
S Cq,

where ¢3 > 0 and ¢4 > 0 are constants independent of &. This finishes the proof of Lemma

3.2. U

Let f = |f|e"” € A(D) be an outer function with zero set Ey. Let & = € and ¢ = ¢/ be two
distinct points. We suppose that |v(§)| < 400 and |[v(()| < 400, where v(§) and v(¢) are the

non tangential limits of v, respectively in & and . We have

lo
v(€) —v(() = ]jmi/ g|f9+t

e—0 27 tan(%t)

= lim / /
e—0

= Ir(§ G A) +Jf(§ ¢ A,

fle—1) |
f(‘P"‘t dt

— log ‘




where 0 < A < 7 is a real number. A partial integration infers

fle—t)

1 (7 log | g i 9+t —log | 7579

Jr(&, (A = — dt
7(6:6:A) 27 tan(5t)

o 1 ™ 1 a t f(@ . S) f(gp B 3)

2 )y tan(3) O (] Tosl gl s oyl

B 1 7r 1 t F(0—5) Flo—s)

B /)\ sin?(1t) (/ 10g‘f(9_|_8)‘ —10g\f(¢+8)\ds>dt. (3.13)
By a change of variables

! — ot ot
/ log|f(9 S)|d3 = —/ 10g|f(8)|ds+/ log | f(s+t+ \)|ds

g =2 9—2

f@+s)
0=t fls+t+N)
/6_)\ log ‘7f(s) |ds. (3.14)

By (3.14) and also a change of variables
_lo |f(()0_3)|ds

)
[ sl oy s
— /99—tlog‘w‘d8_/w—tlog|w|d8
©—A

A f(s) f(s)
PA f(sHt4N) T f(s+t+A)
= log | ———————=|ds — log | ————*|d
el [ el P
I A fls+t), 7 f(s+A)
= /0 log|f(s_)\)|ds /0 log|f(s_t)|ds
= /eo (My(s,t) — Mg(s,\))ds, (3.15)
[4
where My (s,t) stands for
M;¢(s,t) :=log ‘ f(;(:)t) ‘ + log ‘ f(fs(;)t) ‘, € [0,2n[ and t € [0, 7].
Using equalities (3.13) and (3.15), it follows
M ( Me(s, A
JH(ECN) 47T/ / ! Sstm f8N b o<z (3.16)

The next Lemma shows that condition (3.3) of Proposition 3.1 is a necessary condition.

Lemma 3.3. Let f be an outer function in A,, such that {r(|f]) < +oo. Then

ecer  w(l€—¢)

< 400

Proof. Fix two distinct points £ = € and ¢ = €', 0 < 0 < ¢ < 27. Set A := Aig(€,¢)- We have

to discuss four possible cases.

1. If | — ¢| > A, then

[FIE QA 1(E,€) < |FIE, ) =24 ([f]) (A) < 2¢n([f]) (1§ — <)

9



2.

2.1.

2.2.

Now, suppose that |£ — (] < A. Since £ # ¢, then A # 0. It follows that [£,¢] C T\ Ey.
We set

p=py(§,¢) = llﬁf}am( 7).

Note that p is a positive number.

Assume that |¢ — ¢| > p. Using Lemma 3.2 and the continuity of w, we obtain
16 QA7(E ) < IF16:0) < e inf wlayj (o) = epwln) < 5 w(l§ =)
Now, assume that [€ — ¢| < min{)\, p}. Using the fact that f € A, we obtain
1, O)le™® — O] < dwr(f) w(l€ — ¢ (3.17)
Set I1(&,¢) = I£(£,¢,A) and Jy(€,¢) := Jy(€, ¢, A). We have

) _ iv(C) 25111(“ )
- 281n<[f§C + (e
- 2sm(1f )aos( 54))
+ 2cos (I;(€, )sm< gg)) (3.18)

Using the fact that |z| 4 |cosx| > 1, for every real number z, combined with equality

(3.18), we get

| sin (If(g, g)>|

< sin (15(6.0) 756 O + [sin (17(6,0) ) cos (5(6,0))|
< ‘Jf(f,Cﬂ + %‘ei”(@ — ei”(<)| + ‘ cos (If(f,C)> sin (Jﬂf,())‘
< %|€“’(5)—ei”(C)\Jr?\Jf(&C)\. (3.19)

From (3.17) and (3.19), we have

16O sin (176, Q) )| < 2wr(Fw(le = D)+ 2171(E O (€, ). (3.20)

In the other hand,

£l > Z17(6)] 2 51716 Q) = vr (),

10



with e € [£,(] and e € VU, i.. We fix two points € € T and e € T such that
e € [€,(], e™ € U,is and |e™ — €| > \. Since ¥(t)/t is non increasing, we obtain
|f ()| = f(5)]]
log|=—=|| = log | +1
s gyll = o8 Guggizar ooy )

20n(1f) iu_ e
lOg(\f\(f ) (‘e ’)—’_1)

2 (£ )0 e — e
< ke(Taeo

log (¢ L), (3.21)

+1)

IN

The constants ¢; > 0, ¢ € N, that appears in what follows are independent of both & and
¢. From (3.21) and the fact that v (¢)/t is non increasing, we obtain

(D
|f| f C / / wjr(\f\) ’Mf S, t;’d dt

SlIl

< alfiE ok - d/ Bﬁ—éigﬁ
< 2en ()N — ¢
< exb(lE ). (3.22)

It is clear that |M(s, \)| < 2log2. Then
My (
s [ [ B N < o189

s (€ — ). (3.23)

IN

From (3.16), (3.22) and (3.23), we get

e M (s, M(s, A
eyl < i [ [T T
2
1 | My(s, A)|
- |f|£</ / el dsdt
1 m(\f\) | My (s,t)]
- rﬂsc/‘/ Ere el
1 \Mf s, )|
+ IfléC// o) sl
< c(l€—<) +C7/0 \fS !a|f\(€”)d8
< eep([€ =) +erlg — (| Sel[lqu\f(a)!a|f\(0)- (3.24)

Making use of (3.24), Lemma (3.2) and the fact that w(¢)/t is non increasing, it follows

AEOAEN < coulle =)+ eslg - (| Aot

< cew (€ = C) + esw(l€ = C]).
cow(|§ = ¢l)- (3.25)

11
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Finally, combining (3.20) and (3.25) gives rise to

116 Q] sin (1(6,0))] < exowle — <))

This completes the proof of Lemma 3.3.

3.1.2. Sufficient conditions. In this section we prove that (3.2) and (3.3) of Proposition 3.1 are
sufficient conditions for a function h so that O} € A,,.We begin by the following Lemma (see |5,
pages 98-100])

Lemma 3.4. Let h: T — R" be a continuous nonnegative function satisfying conditions (1.4)

and (1.6). Fiz a point & € T\ Ey,. Then

lim v, (re?) = v, ('), ' € Wy,

r—1

uniformly on the arc We.

Proof. Define

27 sin(t)
t) = < 1 and ¢ 2
Q1) 1 — 2rcos(t) + r?’ Osr<landte[02m],

to be the conjugate of the following Poisson Kernel

1—r?
P(r,t) = . 0<r<Tlandtel0,2n].
(r,¢) 1 —2rcos(t) + r? " o 0, 2]

We fix a point £ € T\ Ej,. Let 0 < e < % be a real number. Set

Ae(€) = inf pr(e1S)

Ceve ¢T(h))'

Let z = re’¥ € D, be a point such that e € Ug and 1 —r < A(€). It is easy to check that

Mp+1)> Zh(©), It < Au(E) and ¢ € e
Then
h(p —1t) [h(p —t) = h(p —1t)| i
| log h((ﬁt)\ < T CEDRICED)! <8, 0<t<A(E)and e € W

12



In what follows, the constants ¢; > 0, ¢ € N, are independent of both ¢ and . We have

1 log R
M@_%zrmmwﬁ
1 1-r h(cp
/) Q(r, t)‘ log ———= e
1 [T h(o —t)
+ 0 LJ«Q&J)—(W}JD‘ng@;I?ﬂdt

hp — 1) " h(e —1t)
m‘ +02/1_TP(T,t)‘logm dt,

IN

(dt

IN

c1 sup |log

0<t<l—r

8cie + 62</ +/ )
1—r<t<A (&) >A-(€)

c3€ + ¢4 sup {Prt}x/|logh )|[dC|
> (€)

1oy
A2(&)

From (3.26), we deduce that |11|1mlv L (2) = fuh(|—§|) uniformly on the arc W¢. The proof of Lemma

(3.4) is completed. O

IN

IN

c3€ + ¢5 (3.26)

Now we have to use Tamrazov’s Theorem [10] to prove the following

Lemma 3.5. Let h: T — R be a continuous nonnegative function satisfying conditions (1.4),
(1.6), (3.2) and (3.3). We suppose that |v, (§)| < +o0, for every & € T\ Ep, (see (1.5)). Then
O} € A,

Proof. If we prove that O, € A(D) and that wr(Of) < +oo, then the result follows from
Tamrazov’s Theorem [10]. First we prove that wr(Of) < +o00. Let £ =€ € Tand ( =€ € T
be two distinct points. We have

04(8) = OL(Q)]

[B2(€) = hP(Q)| + hP(€)[e?"n®) — e'on O]

ep¥(h) (1€ = CI) + hP(E, Qle?n® — (O]

< o w(€ = C]) + min{2h°(€.C), hP(E,Q)[e*n® — PO}, (3:27)

IN

IN

Fix A = A\ (&, (). We distingue between three cases.
1. If |€ = ¢| > A, then
(&, ¢) = 2¢r(h) P(A) < 2¢r(h) w(l€ —C]).
2. Now, assume that [ — (| < A and set
= = inf a; (o).
=g = infa (o)
Since [£,(] C T\ Ep, then p is a positive number.

13



2.1. If |£ — {| > p, then by condition (3.2) and the continuity of w,
&) e inf wlay(9)) = en win) < en w(lé = ).

2.2. Now, assume that | — {| < min{\, u}.
Using (3.18)

W (&, Q)e?n® — O] < 2hP (€, Q) Apo (€, C) + 2h°(€, )| Ie (€, C)l- (3.28)
By (3.24)
hP(&; Ol Ine (€ O < crw(|§ = C]) + c2l€ — ] b hP(o)an(o). (3.29)
ocl§,
Since w(t)/t is non increasing and h satisfies (3.2), then
- / _ w(ay' (0))
€ = ¢l sup hP(o)an(o) < 30§ —¢| sup —%
oeled) oelecl @y (9)
< -
o
< ew([§ =) (3.30)

Combining (3.28), (3.29) and (3.30) and the fact that h satisfies (3.3), we get
W, Qle?n® — O] < eyl — ().

From (3.27) and the above three cases, we deduce that wr(Of) < +00. It remains to show that Oy,
is continuous on . Since |0y is continuous on D and Oy, is analytic in D, then Oy, is continuous
on DU E}. We have to show that Op, is continuous on every point £ € T \ Ep,. Fix £ € T\ E},
and z € D such that ﬁ € We. It is clear that

z

E P |)|v() (| | P |) O, (©)1.

Hence, from Lemma 3.4 and the fact that wr(Op) < 400, we deduce the continuity of Oy at €.

05(2) = O(E)] < 1105(2)] = b ()] + ph?( )+ 105(

The proof of Lemma 3.5 is completed. O

4. PROOF OF THEOREM 1.1
We need the following Lemma

Lemma 4.1. Let h: T — RT be a continuous nonnegative function satisfying conditions (1.4),
(1.6), (1.7) and (1.8). Then (3.3) is fulfilled and |v, (§)| < 400, for all§ € T\ Ej,.

Proof. Using (1.6), we obtain

1
Sh(0) <ho +1) < §h(9), (4.1)
for every 6 and t such that ¢ € T\ Ej, and |t| < w*(QZ((ih)). Next, fix e’ € T\ Ej, and let
0<s< 1/1*( () )) be a real number. By (4.1) and (1.7), we obtain
| lim log h(91+ t)dt| < 2 hm/ |h(0 +t) —1h(9—t)|dt
¢—0 S't‘gs tan(it) h(e) e—0 e<t<s tan(it)
O

<
14



where ¢ is a constant that not depend on s. Hence |v, (§)| < +oo, for all £ € T \ E}. Now, we

prove the estimate (3.3).
1€ — ¢ < An(&,€) := A. We have

Let £ = € € T and ¢ = ¢ € T be two distinct points such that

Ah(£7C)
6~ | 1 1 +)
< C1hm—/ |Ogh ‘+|Ogh )|dt
e—0 27 t
h(0+1) h(p+t)
1 loeng e e dt|. (4.2)
27 Jie—¢| tan(5t)
Using (1.7), we obtain
o rle=dl |10gh \+\1og’g§j;fg\
h(&.¢) i | t it
1€—¢| _ _ || _ _
- 2111% |h(6 + 1) t h(6 t)|dt+21in% |h(p +t) : h(p t)\dt
< ey(l€ = ¢ (4.3)
By (3.16)
L ol
2 le—¢| tan(lt)
= Ju(& G 1€ —<Cl) — Jn(&, ¢ N).
A
- / Mh > t)dsdt
= <\ sin®(3t)
B " !5 ¢l)
wh LS
T Mp(s,\)
+ 47T A Sm2(2t)ddt (4.4)
Since
My (5. 0)| < 2log2,  and |Mh<s,|g—<|>|s4w<h>%, ¢ e led)
Then
My (
/ / s 18 = CDl s < eqpie — ), (4.5)
- sin(5t)
and
™| Mp(
neo |7 [ E ; N isat < cav(le — ). (4.6)
sm 5
From (1.8), we deduce
/ / ’Mh S t d dt
le—¢| sin’ (5t
Ih(s —|—t) x h(s —t) — h2(s)|
— dt)d
) C5/e (i s 2 )
< cep(|§ —CI)- (4.7)
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By combining (4.2), (4.3), (4.4), (4.5), (4.6) and (4.7) we deduce the desired result. This

completes the proof of Lemma 4.1.

4.1. Proof of Theorem 1.1. Let h : T — RT be a continuous nonnegative function sat-
isfying conditions (1.4), (1.6), (1.7) and (1.8). It is trivial that 1 = 2 = 3, where § =
1/max{2,2wp(]O7])}. Using Lemma 3.2 we deduce that 3 = 4. From Lemmas 3.5 and 4.1, we
deduce that 4 = 1. This completes the proof of Theorem 1.1.
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