3rd International Conference on Nuclear Power Plant Life Management (PLiM) for Long Term Operations, Salt Lake City, May 13-17, 2012 ## FP7 project LONGLIFE: Treatment of longterm irradiation embrittlement effects in RPV safety assessment J. May¹, H. Hein¹, E. Altstadt², F. Bergner², H. W. Viehrig², A. Ulbricht², R. Chaouadi³, B. Radiguet⁴, S. Cammelli⁴, H. Huang⁴, K. Wilford⁵ - ¹ AREVA NP GmbH, Erlangen, Germany - ² Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany - ³ Studiecentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire SCK•CEN, Belgium - ⁴ Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, France - ⁵ Rolls Royce Power Engineering Plc, United Kingdom ## **Project general information** LONGLIFE: Treatment of <u>Long</u> Term Irradiation Embritt<u>lement Effects in</u> RPV Sa<u>fe</u>ty Assessment • Collaborative Project: EC grant ~2.6 M€, Project number 249360 NULIFE umbrella project • Project was launched on 01. Feb 2010 (duration: 48 months) #### **Context** - Increasing age of European fleet and envisaged lifetime extensions up to 80 a require an efficient and reliable ageing management - Accurate prediction and surveillance of RPV neutron irradiation embrittlement is a key issue - LONGLIFE has been launched in February 2010 (EURATOM FP7, EC grant 2.6 M€) ## **Overall objectives of LONGLIFE** - Improved knowledge on LTO specific irradiation phenomena in RPV steels relevant for European reactors - Assessment and proposed improvements of prediction tools, codes and standards - Elaboration of best practice guidelines on irradiation embrittlement surveillance under LTO conditions (LTO = long term operation) #### Addressed issues relevant for LTO - High fluence behaviour (saturation?) - Flux effect - Late blooming effect (LBE) in low Cu materials - Effect of Ni and Mn in medium or high Cu materials - P-Segregation / intergranular fracture / NHE ### **European LONGLIFE Consortium** #### 16 partners from 9 countries - HZDR (Coordination) - AREVA (WP7-Leader) - SERCO (WP5-Leader) - MTA EK (AEKI) (WP2-Leader) - NRI (WP4-Leader, WP8-Leader) - CIEMAT (WP3-Leader) - TECNATOM (WP6-Leader) - SCK-CEN - CEA - EdF - CNRS Uni Rouen - VTT - Ringhals - Rolls-Royce - Uni Oxford - JRC Petten Associated Russian partner: PROMETEY CooA signed ## Workpackages - WP1: Management - WP2: LTO RPV conditions and available data for LWRs - WP3: Microstructure - WP4: Mechanical properties and testing - WP5: Materials assessment and applications - WP6: Training and dissemination of results - WP7: Surveillance guidelines - WP8: Cooperation with Russia #### WP2: LTO RPV conditions and available data for LWRs WP-Leader: MTA EK (AEKI) - Determine LTO irradiation conditions of the different types LWR reactors - Collecting existing irradiation embrittlement data relevant for LTO - Identification of missing data for LTO #### **WP3: Microstructure** WP-Leader: CIEMAT #### Objectives - Generation of microstructural data of highly irradiated RPV materials - Effect of Cu, P, Ni and Mn on the evolution of microstructure under irradiation - Flux effect on the evolution of microstructure - Correlation of microstructure and mechanical properties irradiated to 5.22x10¹⁹ cm⁻² ## WP4: Mechanical properties and testing WP-Leader: NRI (with assistance of ANP for Western LWRs) - Generation of a database for LTO relevant fluences in terms of hardness, tensile curves, DBTT shift and FT (T_0) - Perform additional tests where necessary - Flux and saturation effects on mechanical properties - Effect of Cu, P, Ni and Mn on the mechanical properties under irradiation ## **WP5: Materials assessment and applications** WP-Leader: SERCO (with assistance of HAS CER (AEKI) for WWERs) - Critical evaluation of internationally-accepted procedures for predicting the effects of irradiation embrittlement on RPV steels (trend curves) - Contribute to the materials knowledge base needed to ensure the safe LTO of existing European LWRs and Generation-III reactors under construction - Support efforts towards harmonisation of European procedures for RPV safety assessment and plant lifetime extension ## **WP6: Training and dissemination of results** WP-Leader: TECNATOM - Transmission and preserving the knowledge by educating and training professionals and young researchers - Establish a sustainable exchange of information on LTO within NUGENIA - Producing relevant information for RPV licensing activities by dissemination of the project results - Develop and maintain the project website ## **WP7: Surveillance guidelines** WP-Leader: ANP-G (with assistance of NRI for WWERs) #### • Objectives: - Review of surveillance standards - Transferability of results from irradiation in high flux MTRs to LWR conditions - Possibilities to extend standard RPV surveillance programs towards LTO - Benefits of mitigation measures (flux reduction, annealing) - Surveillance guidelines for LTO (End product of LONGLIFE) ### **WP8: Cooperation with Russia** WP-Leader: NRI - Comparison of Russian and European approaches for the treatment of LTO embrittlement effects in RPV safety assessment - Comparison of the Master curve concept and the Unified curve concept for highly irradiated RPV steels - To enlarge the knowledge base on LTO irradiation effects by a synergistic use of Russian and European data and procedures ## **Experimental work** ## <u>Microstructure</u> - TEM - TEM deformed - APFIM - SANS - SEM - AES - PAS ## **Mechanics** - Re-evaluation of data - FT tests - Tensile - Charpy impact - Hardness ## **Samples** - Preparation - (Further irradiation) - Materials procurement - Transports ## **Selected materials – Experimental matrix** | ANP-2 <u>P60</u> | WM S3NiMo1 | MTR | AP, SANS, TEM
FT | | | |------------------|--------------------------|---|-----------------------------------|-------------------------------|--| | ANP-6 / RAB1 | WM S3NiMo | MTR | AP, SANS, TEM, PAS | | | | ANP-5 | WM NiCrMo1 | MTR (evidence for flux effect) | SANS, PAS | | | | ANP-4 <u>P60</u> | BM 22NiMoCr3-7 | MTR | SANS, TEM | Representative
Western LWR | | | SCK-6 | BM 22NiMoCr3-7 | MTR | SANS, TEM, IF, PAS
Tensile | | | | SCK-EDF-1 | BM 16MND5 | Surveillance + decomm. (Chooz A) | AP, SANS, TEM | | | | EDF-2 <u>P60</u> | BM 16MND5 | Surveillance | AP, SANS, TEM | | | | EDF-3 <u>P60</u> | WM 16MND5 | Surveillance | AP, TEM | | | | FZD-1a | BM A533B
high P (JPB) | MTR (evidence for LBE at Tirr=255°C) | AP, SANS, TEM, AES Tensile | Western LWR
Special | | | FZD-1b | BM A533B
low P (JPC) | MTR
(evidence for LBE at Tirr=255°C) | AP, SANS, TEM, AES Tensile | Effects | | | FZD-2 | WM 10KhMFT | Decomm. (Greifswald 4) | SANS, AES
FT, SPT, Tensile, HV | VVER-440/230 | | | VTT-1 | WM 10KhMFT | Surveillance | SANS, TEM
FT | VVER-440/230 | | | AEK-1 | BM 15Kh2MFA | MTR
Decomm. (Greifswald 8, unirr) | AP, SANS, TEM
FT, HV | VVER-440/213 | | | NRI-6 | BM+WM 15Kh2MFA | Surveillance | ТЕМ | ▼ ▼ LIN-44U/213 | | | NRI-1 | WM 5Kh2NMFAA | MTR | AP, TEM
Impact, Tensile, HV | VVER-1000 | | ## Range of chemical compositions | | Cu | Ni | Mn | Si | Р | |-----|--------------------|-----------------|----------------------|-----------------|------------------| | Min | 0.01
(FZD-1a,b) | 0.04
(AEK-1) | 0.44
(AEK-1) | 0.14
(AEK-1) | 0.006
(SCK-6) | | Max | 0.22
(ANP-5) | 1.70
(ANP-6) | 1.45 (FZD-1b) | 0.35
(EDF-3) | 0.038
(VTT-1) | ## **WP2: LTO Boundary Conditions** | | WWER-440
V-213 | KONVOI | BWR | |---|----------------------------|-------------------------------------|------------------------------| | Flux [n/cm ² s]
E > 1MeV | 2.1 · 10 ¹¹ | 2 · 10 ⁹ | 1.2 · 10 ⁹ | | Fluence [n/cm²] E > 1MeV 80 a operation | 5.2 · 10 ²⁰ | 5 · 10 ¹⁸ | < 3 · 10 ¹⁸ | | T _k / RT _{NDT} [°C]
80 a operation | < 140
(T _k) | < 40
(RT _{NDT}) | < 40
(RT _{NDT}) | Source: Gillemot et al. D2.1 ## WP3: SANS results on VVER-440 weld (Greifswald 4) Viehrig HW et al., Int. J. Pres. Vessel Piping 89 (2012) 129-136 ## WP4: FT measurements on material FZD-2 completed Viehrig HW et al., Int. J. Pres. Vessel Piping 89 (2012) 129-136 Inhomogeneities in the multi-layer weld dominate over irradiation effects ## WP4: Mechanical testing of highly irradiated materials - Here: no Late Blooming Effects at LTO fluences (290 °C irradiation) - For lower irradiation temperature (255 °C) and neutron flux, LBE has been reported for FZD-1a and FZD-1b - Difference between JPB and JPC indicates P-Effect ## **WP6 Training and Dissemination of results** #### • Training - CAPTURE tutorial / IAEA technical meeting in Znojmo Oct 2010 (2 LONGLIFE grants) - Oct 2011: APT school Rouen (LONGLIFE support of young scientists); special nuclear session dedicated to LTO phenomena in RPV steels #### • Website operates well Training Symposium on Irradiation Effects in Structural Materials for Nuclear Reactors Addressed to young scientists and engineers September 17-21, 2012 # Seville University of Seville School of Architecture O ETSA #### Main Topics - Overview of NPP technologies - Long term operation - Effects of irradiation on reactor materials - Registration Deadline: June 15, 2012