3rd International Conference on Nuclear Power Plant Life Management (PLiM) for Long Term Operations, Salt Lake City, May 13-17, 2012

FP7 project LONGLIFE: Treatment of longterm irradiation embrittlement effects in RPV safety assessment

J. May¹, H. Hein¹, E. Altstadt², F. Bergner², H. W. Viehrig², A. Ulbricht², R. Chaouadi³, B. Radiguet⁴, S. Cammelli⁴, H. Huang⁴, K. Wilford⁵

- ¹ AREVA NP GmbH, Erlangen, Germany
- ² Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany
- ³ Studiecentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire SCK•CEN, Belgium
- ⁴ Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, France
- ⁵ Rolls Royce Power Engineering Plc, United Kingdom

Project general information

 LONGLIFE: Treatment of <u>Long</u> Term Irradiation Embritt<u>lement Effects in</u> RPV Sa<u>fe</u>ty Assessment

• Collaborative Project: EC grant ~2.6 M€, Project number 249360

NULIFE umbrella project

• Project was launched on 01. Feb 2010 (duration: 48 months)

Context

- Increasing age of European fleet and envisaged lifetime extensions up to 80 a require an efficient and reliable ageing management
- Accurate prediction and surveillance of RPV neutron irradiation embrittlement is a key issue
- LONGLIFE has been launched in February 2010 (EURATOM FP7, EC grant 2.6 M€)

Overall objectives of LONGLIFE

- Improved knowledge on LTO specific irradiation phenomena in RPV steels relevant for European reactors
- Assessment and proposed improvements of prediction tools, codes and standards
- Elaboration of best practice guidelines on irradiation embrittlement surveillance under LTO conditions

(LTO = long term operation)

Addressed issues relevant for LTO

- High fluence behaviour (saturation?)
- Flux effect
- Late blooming effect (LBE) in low Cu materials
- Effect of Ni and Mn in medium or high Cu materials
- P-Segregation / intergranular fracture / NHE

European LONGLIFE Consortium

16 partners from 9 countries

- HZDR (Coordination)
- AREVA (WP7-Leader)
- SERCO (WP5-Leader)
- MTA EK (AEKI) (WP2-Leader)
- NRI (WP4-Leader, WP8-Leader)
- CIEMAT (WP3-Leader)
- TECNATOM (WP6-Leader)

- SCK-CEN
- CEA
- EdF
- CNRS Uni Rouen
- VTT
- Ringhals
- Rolls-Royce
- Uni Oxford
- JRC Petten

Associated Russian partner: PROMETEY CooA signed

Workpackages

- WP1: Management
- WP2: LTO RPV conditions and available data for LWRs
- WP3: Microstructure
- WP4: Mechanical properties and testing
- WP5: Materials assessment and applications
- WP6: Training and dissemination of results
- WP7: Surveillance guidelines
- WP8: Cooperation with Russia

WP2: LTO RPV conditions and available data for LWRs

WP-Leader: MTA EK (AEKI)

- Determine LTO irradiation conditions of the different types LWR reactors
- Collecting existing irradiation embrittlement data relevant for LTO
- Identification of missing data for LTO

WP3: Microstructure

WP-Leader: CIEMAT

Objectives

- Generation of microstructural data of highly irradiated RPV materials
- Effect of Cu, P, Ni and Mn on the evolution of microstructure under irradiation
- Flux effect on the evolution of microstructure
- Correlation of microstructure and mechanical properties

irradiated to 5.22x10¹⁹ cm⁻²

WP4: Mechanical properties and testing

WP-Leader: NRI (with assistance of ANP for Western LWRs)

- Generation of a database for LTO relevant fluences in terms of hardness, tensile curves, DBTT shift and FT (T_0)
- Perform additional tests where necessary
- Flux and saturation effects on mechanical properties
- Effect of Cu, P, Ni and Mn on the mechanical properties under irradiation

WP5: Materials assessment and applications

WP-Leader: SERCO (with assistance of HAS CER (AEKI) for WWERs)

- Critical evaluation of internationally-accepted procedures for predicting the effects of irradiation embrittlement on RPV steels (trend curves)
- Contribute to the materials knowledge base needed to ensure the safe LTO of existing European LWRs and Generation-III reactors under construction
- Support efforts towards harmonisation of European procedures for RPV safety assessment and plant lifetime extension

WP6: Training and dissemination of results

WP-Leader: TECNATOM

- Transmission and preserving the knowledge by educating and training professionals and young researchers
- Establish a sustainable exchange of information on LTO within NUGENIA
- Producing relevant information for RPV licensing activities by dissemination of the project results
- Develop and maintain the project website

WP7: Surveillance guidelines

WP-Leader: ANP-G (with assistance of NRI for WWERs)

• Objectives:

- Review of surveillance standards
- Transferability of results from irradiation in high flux MTRs to LWR conditions
- Possibilities to extend standard RPV surveillance programs towards LTO
- Benefits of mitigation measures (flux reduction, annealing)
- Surveillance guidelines for LTO (End product of LONGLIFE)

WP8: Cooperation with Russia

WP-Leader: NRI

- Comparison of Russian and European approaches for the treatment of LTO embrittlement effects in RPV safety assessment
- Comparison of the Master curve concept and the Unified curve concept for highly irradiated RPV steels
- To enlarge the knowledge base on LTO irradiation effects by a synergistic use of Russian and European data and procedures

Experimental work

<u>Microstructure</u>

- TEM
- TEM deformed
- APFIM
- SANS
- SEM
- AES
- PAS

Mechanics

- Re-evaluation of data
- FT tests
- Tensile
- Charpy impact
- Hardness

Samples

- Preparation
- (Further irradiation)
- Materials procurement
- Transports

Selected materials – Experimental matrix

ANP-2 <u>P60</u>	WM S3NiMo1	MTR	AP, SANS, TEM FT		
ANP-6 / RAB1	WM S3NiMo	MTR	AP, SANS, TEM, PAS		
ANP-5	WM NiCrMo1	MTR (evidence for flux effect)	SANS, PAS		
ANP-4 <u>P60</u>	BM 22NiMoCr3-7	MTR	SANS, TEM	Representative Western LWR	
SCK-6	BM 22NiMoCr3-7	MTR	SANS, TEM, IF, PAS Tensile		
SCK-EDF-1	BM 16MND5	Surveillance + decomm. (Chooz A)	AP, SANS, TEM		
EDF-2 <u>P60</u>	BM 16MND5	Surveillance	AP, SANS, TEM		
EDF-3 <u>P60</u>	WM 16MND5	Surveillance	AP, TEM		
FZD-1a	BM A533B high P (JPB)	MTR (evidence for LBE at Tirr=255°C)	AP, SANS, TEM, AES Tensile	Western LWR Special	
FZD-1b	BM A533B low P (JPC)	MTR (evidence for LBE at Tirr=255°C)	AP, SANS, TEM, AES Tensile	Effects	
FZD-2	WM 10KhMFT	Decomm. (Greifswald 4)	SANS, AES FT, SPT, Tensile, HV	VVER-440/230	
VTT-1	WM 10KhMFT	Surveillance	SANS, TEM FT	VVER-440/230	
AEK-1	BM 15Kh2MFA	MTR Decomm. (Greifswald 8, unirr)	AP, SANS, TEM FT, HV	VVER-440/213	
NRI-6	BM+WM 15Kh2MFA	Surveillance	ТЕМ	▼ ▼ LIN-44U/213	
NRI-1	WM 5Kh2NMFAA	MTR	AP, TEM Impact, Tensile, HV	VVER-1000	

Range of chemical compositions

	Cu	Ni	Mn	Si	Р
Min	0.01 (FZD-1a,b)	0.04 (AEK-1)	0.44 (AEK-1)	0.14 (AEK-1)	0.006 (SCK-6)
Max	0.22 (ANP-5)	1.70 (ANP-6)	1.45 (FZD-1b)	0.35 (EDF-3)	0.038 (VTT-1)

WP2: LTO Boundary Conditions

	WWER-440 V-213	KONVOI	BWR
Flux [n/cm ² s] E > 1MeV	2.1 · 10 ¹¹	2 · 10 ⁹	1.2 · 10 ⁹
Fluence [n/cm²] E > 1MeV 80 a operation	5.2 · 10 ²⁰	5 · 10 ¹⁸	< 3 · 10 ¹⁸
T _k / RT _{NDT} [°C] 80 a operation	< 140 (T _k)	< 40 (RT _{NDT})	< 40 (RT _{NDT})

Source: Gillemot et al. D2.1

WP3: SANS results on VVER-440 weld (Greifswald 4)

Viehrig HW et al., Int. J. Pres. Vessel Piping 89 (2012) 129-136

WP4: FT measurements on material FZD-2 completed

Viehrig HW et al., Int. J. Pres. Vessel Piping 89 (2012) 129-136

Inhomogeneities in the multi-layer weld dominate over irradiation effects

WP4: Mechanical testing of highly irradiated materials

- Here: no Late Blooming Effects at LTO fluences (290 °C irradiation)
- For lower irradiation temperature (255 °C) and neutron flux,
 LBE has been reported for FZD-1a and FZD-1b
- Difference between JPB and JPC indicates P-Effect

WP6 Training and Dissemination of results

• Training

- CAPTURE tutorial / IAEA technical meeting in Znojmo Oct 2010 (2 LONGLIFE grants)
- Oct 2011: APT school Rouen (LONGLIFE support of young scientists); special nuclear session dedicated to LTO phenomena in RPV steels

• Website operates well

Training Symposium on Irradiation Effects in Structural Materials for Nuclear Reactors

Addressed to young scientists and engineers

September 17-21, 2012

Seville

University of Seville School of Architecture O ETSA

Main Topics

- Overview of NPP technologies
- Long term operation
- Effects of irradiation on reactor materials
- Registration Deadline: June 15, 2012