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Abstract

Recent activities at the ORNL Multicharged Ion
Research Facility (MIRF) are summarized. A brief
summary of the MIRF high voltage (HV) platform and
floating beam line upgrade is provided. An expansion of
our research program to the use of molecular ion beams in
heavy-particle and electron collisions, as well as in ion-
surface interactions is described, and a brief description is
provided of the most recently added Ion Cooling and
Characterization End-station (ICCE) trap. With the
expansion to include molecular ion beams, the acronym
MIRF for the facility, however, remains unchanged: “M”
can now refer to either “Multicharged” or “Molecular.”

THE MIRF UPGRADE PROJECT AND
RECENT FACILITY ACTIVITIES
In order to enhance the capabilities of on-line
experiments of the MIRF [1], a facility upgrade project
was undertaken to add an all permanent magnet ECR
source on a new 250 kV HV platform, and to modify the
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Figure 1: Results for O"® — H electron capture [7].
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existing CAPRICE ECR source to inject a new floating
beam line, from which beams could be decelerated into
grounded end stations with final energies as low as a few
eVxq, where q is the charge state of the analyzed beam
[2][3]1[4]. An electrostatic trap end station was also added
to the facility, for multi-second confinement of
metastable-multicharged or hot-molecular ions to reduce
their degree of internal excitation either for lifetime or
subsequent cold collision studies [5].

Table 1: Performances of the MIRF ECR sources [6]

Ton CAPRICE 10 GHz  Platform ECR source
Xe 420 35 uA 52 uA
+26 9 24

+29 -- 3

Ar +8 500 510
+11 70 90

(¢} +6 400 650
+7 50 90

The new permanent magnet ECR source was designed
and built at CEN-Grenoble, and has been previously
described [6]. Table 1 summarizes typical multicharged
ion performances for the CAPRICE and the new
permanent magnet ECR sources injecting the low-energy
and high-energy MIRF beam lines, respectively.

To illustrate the increased experimental capabilities
made possible by the facility upgrade, Figure 1 shows
recent results for electron capture by fully stripped
oxygen ions from atomic hydrogen obtained with the
upgraded ion-atom merged beams experiment. For these
measurements, a well-collimated, small-cross section O
beam was merged with a fast ground-state atomic
hydrogen beam produced by photodetachment, and the
protons resulting from charge exchange collisions
between the two fast beams monitored.

The present MIRF layout is shown in Figure 2. The
facility is comprised of 5 on-line experiments fed by the
new HV platform ECR source, and 3 on-line experiments
injected from the new low-energy floating beam line.
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Figure 2: Present configuration of the ORNL Multicharged Ion Resarch Facility. A total of eight on-line experiments
studying electron- and heavy-particle collisions, and ion-surface interactions utilize ion beams from either the new
permanent magnet ECR ion source on the 250 kV HV platform or from the existing CAPRICE ECR ion source

injecting the new floating beam line (see above).

Molecular ion beams

In addition to their well documented capability of
highly charged ion production, both ECR sources in the
MIRF have recently found increasing use for production
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Figure 3: B and F mono- and di-hydride beam production
by CAPRICE ECR gas mixing of BF3 and D2 at a total
source pressure of 1x10-4 Torr and 4 W forward rf power.

of molecular ion beams as well, due to the increased
programmatic focus of our research activities on the
atomic collision and surface interactions occurring in the
cool edge of magnetic fusion devices, and on electronic
driven process in systems of increasing chemical
complexity. Figure 3 illustrates synthesis of B and F
mono- and di-hydride molecular ion beams in the
CAPRICE ECR source plasma using a mixture of BF;
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and D, source gases that can be optimized by a
combination of high source pressure and low rf power.
These beams were required for exploration of electron
impact dissociation of such molecular ions along iso-
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Figure 4: CAPRICE ECR D beams for a source pressure
of 5x10-5 Torr and 10 W forward rf power.

electronic sequences. Figure 4 illustrates synthesis of D;"
ions, again in the CAPRICE ECR source, from D, source
gas at very high source pressures and low rf powers. Such
beams, decelerated to a few eV, are used in our studies of
low-energy chemical sputtering of C materials. Intense
beams of molecular ions have been obtained using the all-
permanent magnet HV platform ECR source as well [8].
However, extraction region discharges due to the poorer
extraction region pumping of the permanent magnet
source limit its high-source-pressure operation. The D;"
beams from the platform ECR source are typically lower
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in intensity than those produced with the CAPRICE, and,
unlike Figure 4, can’t be tuned to exceed the D, current.

ICCE Trap

The final element of the MIRF upgrade project was the
development and installation of the Ion Cooling and
Characterization End-station (ICCE) trap. This electro-
static trap is side-injected by a combination of 32° and
13° pulsed parallel plate deflectors, simplifying HV

‘hot’ions
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Figure 5: Schematic diagram of the ICCE trap [5].

switching and permitting DC operation of the two
electrostatic end mirrors [5]. A neutral fragment imaging
detector located outside one of the end mirrors is
implemented to permit analysis of kinetic energy release
during electron- or heavy-particle-induced dissociation of
the trapped molecular ions. Figure 5 shows a schematic of
the ICCE trap. Recently multi-second trapping of CO"
ions has been achieved. In-situ electron and gas jet targets
are being used to study electron and heavy-particle
collisions of molecular ions as function of trapping times,
i.e., as function of the degree of internal cooling of the
trapped ions.

Plasma potential measurements

An issue of continuing interest is the determination of
the ECR source plasma potential and the energy spread of
extracted ions. These parameters impact the magnitude
and uncertainties of impact energies of decelerated beams
used in our low energy ion surface interaction studies [9]
and thus must be known. In addition, knowledge of these
parameters may improve fundamental insights into the
ECR plasma dependences on pressure, microwave power,
confinement magnetic fields, and elucidate the basis of
the gas mixing effect. In-situ Langmuir probe
measurements of MIRF CAPRICE plasma potentials have
been reported in [10]. More recently, complementary
measurements of plasma potentials based on retardation
analysis of extracted ion beams [11] have been carried
out, which are generally consistent with the in-situ probe
measurements. A typical plasma potential and ion energy
spread result from analysis of external beam deceleration
is shown in Figure 6.
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Figure 6: CAPRICE ECR plasma potential (~13.8 eV)
and ion energy spread (~4 eV) deduced from retardation
analysis of a D" ion beam extracted at a source pressure
of 2x107 Torr and 6 W forward rf power [11].
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Timeline of the Multicharged lon Research Facility (MIRF)

* ORNL ECR ion source, since 1984, dedicated to atomic collisions physics, MIRF established
+ CAPRICE ECR ion source, since 1992
* MIRF upgrade project

Extend upper energy limit to 250xq keV by placing new all permanent magnet ECR ion source
on 250 kV high voltage platform

- expands capabilities of present experiments
- opens door to new areas of study
- completed 2005

Extend lower energy limit to few eVxq by injecting CAPRICE beams into a floating beamline

- efficient extraction and beam transport with subsequent deceleration at experimental
end station

- simplifies present decelerated beams surface scattering experiment

- makes possible new experiments at very low energies

- completed 2007

Develop linear electrostatic trap end station
- fragmentation imaging for in-situ collisions of cold molecular ions with electrons and

neutrals
- Multisecond trapping lifetimes achieved Oct 2009



Present MIRF layout
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Atomic Collision Studies at MIRF

Electron Collisions (Electron X-beam, MEIBEL, ICCE) Low Energy lon-Surface Scattering
» Excitation and ionization of atomic ions » Chemical sputtering of graphite by low-energy D ions
» Dissociation and ionization of molecular ions * Neutralization of highly-charged ions in interactions
* lon beam excited state populations with conducting and insulating crystals
 Dielectronic recombination of atomic ions » Charge-state distributions of scattered ions and neutrals
 Dissociative recombination of molecular ions » “Soft” Molecular dissociation
» Collisions with cooled ions (fragment imaging) * C-14 Detection
Heavy Particle Collisions (Merged beam , ICCE, COLTRIMS) High Energy lon-Surface Scattering
» Charge exchange between neutral atoms and » Multicharged ion transmission/neutralization
molecules and atomic and molecular ions in nanocapillaries
* Very low relative velocities for heavy projectiles » Multicharged projectile neutralization in grazing
« X-ray emission measurements of low energy surface interactions
CEX by HCI * Projectile excitation during grazing interactions
 Highly charged ion neutralization during large with periodic (insulator) lattices
angle projectile scattering * Molecular dissociation interactions

* Projectile excited state characterization
Molecular dissociation
» Collisions with cooled ions (fragment imaging)



HV platform permanent magnet ECR ion source (Denis Hitz & Grenoble group)

1| P
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High voltage platform layout
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ECR

>90% transmission to end stations from 20 — 270 kV
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Platform and high energy beam line control system (A-B ControlLogix/EPICS)
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Ethernet bridges among ControlLogix Chassis and to EPIX PC
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The floating beam line injected by CAPRICE
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Low energy floating beam line HV isolation details

» Beamline supports on insulating Delrin blocks

» All pumps (1 DP, 1 TP, and 2 cryopumps) and ion
gauges at ground potential, isolated from
beamline HV by Delrin DC breaks

 All vacuum gate valves at HV: valve solenoids at
ground potential

* 3.2 mm thick Teflon sheet between vacuum box
and magnet for HV isolation
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Floating beam line and ion source control screen with charting feature enabled
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CAPRICE / Floating Beam Line Control System Network Diagram

Floating Beam Line Rack CAPRICE Control Console Racks
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Low energy beam line - Control System Features

Group3 ControlNet fiber-optically-linked distributed control system

Small intelligent outstations (Device Interfaces or DI's) contain 1/0O boards

A Loop Controller (LC) card handles communications on the fiber loop

Group3 virtual instruments (VI) for LABVIEW handle all set-up tasks, and access all I/0O data in LC
Implements open source LuaVIEW data logging package

process variables (tags) logging using time-, event-, or threshold-based algorithms
alarms or warnings if limit values are exceeded

mass scan utility

charting functions

control variable save and restore functions




Low energy sputtering experiment needs well characterized, intense molecular ion beams
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Correction for the ECR plasma potential is crucial for low energy experiments
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ECR source chemistry produces molecular ion species for Electron X-beam Experiment
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lon-atom Merged Beams Experiment uses multi-charged as well as molecular ion beams
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The new lon Cooling and CharactErization (ICCE) Trap End Station

ions
5 5 5 , from source
Ion Cooling and Characterization End-station .

« lifetime studies of excited (ICCE TRAP) -
0 Y|
molecular and multi-charged haac
ions afactor
* neutral fragment imaging mirror (8]

cold

« studies of dissociative nore W T
recombination and capture Eheld

of molecular ions

crossed beam
electron target

Time sequerce 330 ms exposure images of neatral
O, fagnent dekcted using the ICCE Trap imaging
detector forl0keV O, ors stored in the trap.

10* C T T T T T =
n . T T T T T T T
. 10 keV K ions (nulled B-field)
O.+ k. -« neutral K-atom count rate
10° 23229 E B 5
* _ * T At
exp(-0.001577 *T) 3 S 1001
) ] -] ]
£ S
S . =
8 I 1 2
1
. [~
- =
- (=]
C O, -
B 311 * exp(-0.001469 * T) 10
10’ | | ! | ] |
0 400 800 1200 1600 2000 0

Time (ms) Storage Time (seconds)




