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Abstract

Supercritical pressure natural circulation experiments were carried out with CO; in a
uniform diameter rectangular loop. Experimental data were generated on, steady
state flow, heat transfer and stability under natural circulation conditions. The steady
state flow rate data obtained were compared with the predictions of 1-D code
NOLSTA which showed good agreement. The supercritical heat transfer coefficient
data showed a peak around the pseudocritical point. The heat transfer coefficient
data were compared with different correlations reported in the literature. Good
agreement was obtained with the prediction of Mcadms, Bishop, Jackson and
Jackson Fewester correlations. Instability was observed in the loop in a narrow
window around the pseudo critical region with low cooling water flow rate for the
HHHC orientation. All other orientations of heater and cooler were found to be
stable. The stability data were compared with the predictions of the nonlinear stability
analysis code NOLSTA. The details of the experimental set-up, experiments carried
out and the results of the analysis are presented in this report.
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1.0 INTRODUCTION

Thermodynamically supercritical fluids are one of the several coolant options being investigated
currently for advanced nuclear reactors. Both supercritical CO, [1-2] and supercritical water [3-
6] are candidate coolants for advanced reactors. The advantage of supercritical fluids is higher
thermodynamic efficiency due to the larger operating temperature possible. Since boiling is
avoided, the critical heat flux phenomenon is eliminated raising the possibility of higher power
density. Besides, supercritical fluids like water can be directly sent to the turbine eliminating
the requirement of steam generator, steam-water separator and dryer. Further, most
supercritical reactor designs proposed are once-through type eliminating the need for
pressurizer and reducing the number of components like pumps. In addition, components like
the primary pumps are of significantly lower rating compared to their counterparts in the
current LWRs of the same rating due to the significantly lower core flow rate resulting from the
larger enthalpy rise across the core. The higher power density could significantly lower the core
size. Also pressure retaining parts can be designed at lower temperatures compared to current
reactor designs. The foregoing advantages suggest that the supercritical reactor could be far
more competitive economically compared to the current LWR:s.

However, supercritical fluids undergo significant property changes in the pseudo-critical region.
For example, the density changes in supercritical reactors are comparable to or more than that
in present day BWRs raising the possibility of density wave instability in these reactors. In view
of this, several investigators have already looked at the instability of supercritical fluids [7-8]. A
few investigations were also conducted with supercritical CO, which is a good simulant fluid for
water [9-11]. Fluid-to-fluid modeling aspects have been studied by Marcel et al. [12] and found
that a 77.5%/22.5% mixture of refrigerants R-32 & R-125 simulates the supercritical water
(SCW) conditions in HPLWR (High Performance Light Water Reactor). They also found that
supercritical CO, cannot accurately simulate the HPLWR conditions with water. A few studies
have been made to extend the generalized dimensionless parameters applicable for stability
analysis of two-phase flows to supercritical fluids [13-14]. Some of these studies were carried
out in natural circulation systems [9-11 & 15] as it is also a possible option for supercritical
reactors [16-17]. However, very few experimental studies are reported in the open literature.
To our knowledge, the supercritical test data are reported in rectangular loops by Lomperski et
al. [18] and Holman and Boggs [19] with supercritical CO, and Freon-12 respectively. Besides
Yoshikawa et al. [20] studied the performance of a supercritical CO, natural circulation in a
somewhat complex loop. In the context of the above an experimental investigation of the
steady state and stability behavior has been carried out in a rectangular natural circulation loop
with supercritical CO, as the working fluid and the results are presented here.

Apart from stability the heat transfer and pressure drop characteristics of supercritical fluids
are important for design. Due to the large property variations in the pseudocritical region,
traditional single-phase heat transfer correlations are not adequate to predict the heat transfer
for supercritical fluids. Several investigators have also reported deterioration in heat transfer in
the pseudocritical region similar to that observed in two-phase flows following the occurrence
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of CHF [21-22]. However, the reported degradation is marginal compared to that occurring post
CHF conditions in two-phase flows. Investigations in rod bundles have not shown any
degradation in heat transfer. Thus it is necessary to study the heat transfer behavior in
supercritical systems which are also carried out in the present test facility.

2.0 THE EXPERIMENTAL LOOP

Fig.1 shows the schematic of the experimental loop. It is a uniform diameter rectangular loop
made of 13.88 mm inside diameter stainless steel (S5-347) pipe with outside diameter of 21.34
mm. Standard 41.4 MPa (6000 |b) rating socket weld type elbows are used at the corners (see
detail Ain Fig. 1). The loop has two heater test sections and two cooler test sections so that the
loop can be operated in any one of the four orientations such as Horizontal Heater Horizontal
Cooler (HHHC), Horizontal Heater Vertical Cooler (HHVC), Vertical Heater Horizontal Cooler
(VHHC) and Vertical Heater Vertical Cooler (VHVC). The heater was made by uniformly winding
nichrome wire over a layer of fiber glass insulation. The cooler was tube-in-tube type with
chilled water as the secondary coolant flowing in the annulus. The outer tube forming the
annulus had 77.9 mm inside diameter and 88.9 mm outside diameter. The loop had a
pressuriser connected to the bottom horizontal pipe which takes care of the thermal expansion
besides accommodating the cover gas helium above the carbon dioxide. The safety devices of
the loop (i.e. rupture discs RD-1 & RD-2) were installed on top of the pressuriser which also had
provision for CO, & He filling. The entire loop was insulated with three inches of ceramic mat
(k=0.06 W/m?).

2.1 Instrumentation

The loop was instrumented with 44 calibrated K-type mineral insulated thermocouples (1 mm
diameter) to measure the primary fluid, secondary fluid and heater outside wall temperatures.
Primary fluid temperatures at each location was measured as the average value indicated by
two thermocouples inserted diametrically opposite at r/2 (see detail-D in Fig. 1) from the inside
wall whereas secondary fluid temperatures were measured by a single thermocouple located at
the tube centre. This was adequate to obtain the average temperature as the temperature rise
in the secondary fluid was small (< 4 °C). The thermocouples used to measure the heater
outside wall temperature were installed flush with the outside surface. To enable this, a
longitudinal slot of width equal to the diameter of the thermocouple was cut on the outside
surface and the thermocouple was inserted in this groove and brazed. There were 12
thermocouples at six axial distances installed at diametrically opposite locations. The system
pressure was measured with the help of two Kellar make pressure transducers located on the
pressuriser as well as at the heater outlet. The pressure drop across the bottom horizontal tube
and the level in the pressuriser were measured with the help of two differential pressure
transmitters. The power of each heater was measured with a Wattmeter. The secondary flow
rate was measured with the help of three parallel turbine flowmeters. All instruments were
connected to a data logger with a user selectable scanning rate. For all the transient and
stability tests the selected scanning rate was 1 second.
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Fig. 1: Photograph of SPNCL
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Table-1: Fluctuations of measured parameters

Parameter Fluctuation without | Fluctuation under steady state
power natural circulation at 1400 W

Heater inlet temperature (°C) +0.28 +0.44

Heater outlet temperature (°C) +0.44 +0.43

Pressure (bar) +0.28 +0.28

Pressure drop (mm WC) +0.21 +0.21

Secondary inlet temperature (°C) | +0.1 +0.07

Secondary outlet temperature (°C) | + 0.35 +0.47

The accuracy of the thermocouples were within + 1.5 °C. The accuracy of the pressure and
differential pressure measurements were respectively + 0.3 bar and £ 0.18 mm. The accuracy of
the secondary flow as well as power measurement is £ 0.5 % of the reading. In addition, typical
fluctuations of each instrument were also recorded during steady state with and without power
(stagnant initial conditions). As seen from Table-1, there is hardly any difference in the
fluctuations with and without power.

2.2 Shakedown Tests

The purpose of the shakedown tests was to generate heat loss and pressure drop
characteristics of the loop. The pressure drop characterization tests were carried out under
forced flow conditions with the help of a pump in a separate facility using the same bottom
horizontal pipe and one of the elbows installed horizontally. Apart from flow rate and pressure
drop, the temperature was also measured at different flow rates in this facility. From the
measured pressure drop across the bottom horizontal pipe and the flow rate, the friction factor
for the pipe was estimated by the following equation.

2
_ 2DpA 2Apm 1)
Lw

m

f

The estimated friction factor is plotted in Fig. 2. The measured friction factor was somewhat
larger than that for smooth pipes due to the use of commercial pipes. The correlation fitted to
the friction factor data is also shown in Fig. 2. From the measured pressure drop across the
elbow and the flow rate, the loss coefficient was estimated as below.

2 pA’A
K= pW—me (2)

m



The loss coefficient data generated at forced flow condition is plotted in Fig. 3. A correlation

was also fitted to the data. The loss coefficient was found to be constant at 0.55 for Reynolds
numbers greater than 45,000.
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Fig. 2: Friction factor data for the tube Fig. 3: Loss coefficient data for the
. . o .
used in the construction of the loop 90" elbow used in the loop

To test the adequacy of the loop instrumentation for estimating the heat transfer coefficient
and loop mass flow rate as well as to estimate the heat losses, natural circulation experiments
were carried out at various powers with water at subcritical conditions. These experiments
were carried out at a system pressure of 30 bar for all the four orientations of the heater and

cooler. The natural circulation mass flow rate was estimated by a heat balance across the
heater as shown below.

Qs

W=
Cp(Tho _Thi) G

The estimated mass flow rates under subcritical single-phase natural circulation condition are
compared in Fig. 4 with that estimated theoretically using the following equation.

1
e 2Dl+bp2ﬂgA2—thAZ 3p
pCpu”

(4)
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Fig.4: Comparison of measured and predicted subcritical natural circulation flow rate for
various orientations

Subsequently, the data are also compared with the dimensionless correlation proposed by
Swapnalee & Vijayan [23] in Fig. 5. In either case good agreement is obtained between
theoretical and experimental values. To estimate the heat transfer coefficient, first the local
inlet wall temperature was estimated from the measured local heater outer surface
temperature as below.

r
Q.Inf ©
T =T i
wi —'wo T T A4 (3)
2Lk
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o
, &% [ Laminar Fig. 5: Measured and predicted flow
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Then the local bulk fluid temperature was estimated using the measured heater inlet and outlet
temperatures using the following equation.



Tb :Thi + X (Tho _Thi) (6)

h
Where x is the distance from the inlet of heated section. Then the local heat transfer coefficient
was estimated as below.

h:q—h (7)

(Twi - Tb )

Six such local heat transfer coefficients were estimated corresponding to the thermocouple
locations (along the length of each heater) and using these values an average heat transfer
coefficient was estimated and plotted as shown in Fig. 6. The heat transfer coefficient predicted
by the Dittus-Boelter correlation is also shown in these figures. The total estimated heat loss
fraction as a function of the heater power is plotted in Fig. 7. The heat loss fraction is estimated
using the measured Qy, as

Q,-Q. AT, —AT,
Qs AT,

F =

(8)

The heat rejected at the cooler, Qg is estimated using the measured cooler inlet and outlet
primary temperatures as below.
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Where w is estimated using Eq. (3). Since the ambient temperature was significantly high (30+2
°C) compared to the chilled water coolant temperature (9.8+1.6 °C), in certain low power cases,
heat gain was observed instead of loss. As seen from Fig. 7b, the heat loss for different
orientations are different due to the differences in the hot and cold leg lengths.

2.3 Operation with Supercritical CO,

Before operation with supercritical CO,, the loop was flushed repeatedly with CO, at low
pressure including all impulse, drain and vent lines. Subsequently the loop was filled with CO,
up to 50 bar pressure and the chilled water coolant was valved in. This caused condensation of
CO, and hence a decrease in loop pressure. The pressure decrease was compensated by
admitting additional CO, from the cylinder and again allowed sufficient time for condensation.
The process of filling and condensation was continued till there was no decrease in pressure. At
this point the loop pressure was increased to the required value with the help of a helium gas
cylinder. Once the required supercritical pressure was achieved, the helium cylinder was
isolated. Sufficient time was allowed to reach a steady state. However, it was found difficult to
attain completely stagnant conditions with uniform temperature throughout the loop as the
higher ambient temperature allowed small amount of heat absorption through the insulation
into the loop which was rejected at the cooler causing a small circulation rate. Once a steady
state was achieved, the heater power was switched on and adjusted to the required value.
Sufficient time was allowed to achieve the steady state. Once the steady state is achieved,
power was increased and again sufficient time was provided to achieve the steady state. In case
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the system pressure increases beyond the set value by 1 bar, a little helium was vented out to
bring back the pressure to the original value. Similarly during power decrease if the pressure
decreases below the set point by one bar, then the loop was pressurized by admitting
additional helium into the pressurizer. The experiments were repeated for different pressures
and different chilled water flow rates. Subsequently the experiments were performed for
different orientations of the heater and cooler.

3.0 STEADY STATE DATA
Steady state data on natural circulation flow rate and heat transfer were generated with

supercritical CO, for various orientations of the source and sink. The range of parameters of all
the steady state data is

Orientations studied : HHHC, HHVC, VHHC and VHVC
Pressure : 8-9.1 MPa

Power :0.1-2.4 kW

Cold leg temperature :17.5-57.7 °C

Hot leg temperature :19.3-95.9 °C

Coolant flow rate : 29.6-56 lpm (liters per minute)

Coolant inlet temperature  : 8.2-11.4°C
Coolant outlet temperature :9.0-12.5°C

3.1 Steady State Natural circulation Flow Rate with Supercritical CO,

Steady state data for the different heater-cooler orientations (i.e. HHHC, HHVC, VHHC & VHVC)
were generated in the loop. Appendix-1 shows the complete set of steady state data generated.
Table-2 shows the range of parameters for steady state data for each orientation. The steady
state mass flow rate for the experimental conditions were estimated using the measured
heater power and the enthalpy rise across the heater as

w=—%h_ (10)
Tho = Ihi

Table-2: Range of parameters for steady state tests with supercritical CO,
Orientation | Power Loop conditions Secondary coolant conditions

(kw) Pressure | Temperature (°C) Flow rate | Temperature (°C)

(MPa) Cold leg Hot leg (lpm) Inlet Outlet

HHHC 0.19-2.4 | 8.5-9.2 17.7-57.7 | 20.5-95.9 | 29.6-37 8.7-10.2 | 9.5-11.7
HHVC 0.3-2.2 8.5-8.8 20.2-49.3 | 24.2-93.1 | 33.5-34.8 |8.2-9.3 9-10.4
VHHC 0.14-2.4 | 9-9.26 17.5-49.5 |19.6-73.9 | 31.6-38 8.5-11.4 | 9.7-12.5
VHVC 0.1-2.0 8.1-9.1 17.5-41.3 | 19.3-66.8 | 36.2-56 8.6-9.5 8.8-9.7

10



The enthalpies at the heater inlet and outlet were estimated using the corresponding measured
temperatures and system pressure. This is a better approach to estimate the experimental flow
rate since the specific heat variation is significant. The flow rates so estimated were compared
with the predictions of the in-house developed computer code NOLSTA [24] and the results are
presented in Fig. 8a & b. Figure 8a shows the data for three different orientations for which
data were available at 8.6 MPa. For the VHHC orientation data were available only for 9.1 MPa.
The data for VHHC and HHHC orientations are compared with NOLSTA predictions in Fig. 8b.
The data are found to be in close agreement with the code predictions.

0.12
O HHHC .
o HHVO 0.09 Pressure: 9.1 MPa
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< HHVC (NOLSTA code prediction) =<
Qo = ==-VHVC (NOLSTA code prediction) © 006
g 0.06 g
3 3
P 2 003
@ 0.03 2 INON
= = A HHHC
VHHC (NOLSTA code prediction)
0.00 Pressure: 8.6 MPa 0.00 - - - -HHHC (NOLSTA code prediction)
o 1000 2000 3000 ) 1000 2000 3000
Heater Power - W Heater Power - W
(a) Steady state flow rate at 8.6 MPa (b) Steady state flow rate at 9.1 MPa

Fig. 8: Measured and predicted steady state flow rate for various orientations

3.2 Effect of pressure

The data on the effect of pressure on the steady state flow rate are presented in Fig. 9 along
with the predictions by the NOLSTA code. Subsequently, all the data are presented in
dimensionless form in Fig. 10. The dimensionless flow correlations obtained using the Blassius
and the experimental friction factor (see Fig. 2) correlations are also plotted in Fig. 10. The data
are found to be in reasonable agreement with the experimental friction factor correlation.
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Fig. 9: Effect of pressure on the steady state Fig. 10: Steady state flow for various orientations
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3.3 Heat Transfer Coefficient

The heat transfer coefficient was estimated by the same procedure as given in section 2.2 from
the measured outside wall temperature and the fluid temperature. The range of parameters

for heat transfer data are given below

Reynolds number
Prandtl number
Nusselt number
Heat flux

Mass flux

Wall temperature

: 2.5x10%-3.1x10°
:1.1-6.5

: 90-800

: 2.5-50 kW/(m?K)
: 140-500 kg/(m?s)

15-95°C

The local heat transfer coefficients were averaged over the length and the average value was
then compared with the predictions of different correlations reported in literature. Fig. 11 and
12 show the measured heat transfer coefficient in the horizontal and vertical heated sections
compared with different correlations. As seen from the figures, Bishop [26], Jackson-Fewster
[28], McAdams [30] and Jackson [31] correlations represent the data well. Comparing the heat
transfer coefficient data given in figures 11 and 12 with that for subcritical flow given in Fig.6, it
is found that there is a peak in supercritical data which is missing in the subcritical data.
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4.0 STABILITY DATA

Instability was observed only for the HHHC orientation. All other orientations were fully stable.
Even for the HHHC orientation, both the subcritical and the supercritical regions beyond the
pseudo-critical region were found to be mostly stable. Instability was observed only for a
narrow window in the pseudo-critical region at low secondary coolant flow rates (25 lpm and
less).

4.1 Instability Experiments
Instability was observed during the following experiments:

a) Start-up from rest
b) Power raised or lowered from a stable steady state
c) Large power decrease from a stable steady state

It may be noted that although instability was observed in all the above categories, thresholds of
instability could not be established precisely in all cases. Table-3 lists all the instability data that
was generated in the facility. As seen from the table most instability data are for 10 or 15 lpm.

4.2.1 Start-up from rest

These tests were performed as described in section 2.3. After valving in the chilled water flow
nearly 3-4 hours were provided to achieve steady state. Since the ambient temperature (28-32
°C) was much above the coolant temperature (8.2-11.4 °C), complete stagnant conditions could
not be achieved as explained in section 2.3. Typical instabilities observed for start-up from rest
are shown in Fig. 13. At 10 lpm flow, stable start-up is not observed in the clockwise flow
direction for powers greater than 200 W. Start-up tests were not performed below this power.
However, analysis shows stable start-up at very low power. On the other hand if flow initiated
in the counter-clockwise direction, it was found to be stable. Note that the loop is not
completely symmetric (see Fig. 1).

4.2.2 Power raised or lowered from stable steady state

In this case, starting from a stable steady state the power is increased or decreased in small
steps. These experiments were carried out at different pressures and secondary flow rates.
Table-3 shows a summary of the tests done.

Typical instability observed at 9.1 MPa at various powers is shown in Fig. 14, 15 and 16
respectively for different secondary flow rates of 10, 15 and 20 Ipm. In all cases, the instability
develops by the oscillation growth mechanism as proposed by Welander [32]. Instability was
also observed at other pressures as shown in Fig. 17.
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Table-3: Summary of instability data

Sl. Secondary flow
N Gauge
0. Power Coolant 3 _
pressure Flow . Stability data file name* Remark
(W) rate inlet
(MPa) (LPM) temp.
(°C)

1 |90 500 | 101 |98 Stab_90_500_10.1 9.8xis | - oWer decreased from 700 W
to 500 W

2 |90 700 | 155 |98 Stab_90_700_15.5 9.8xis | CWer decreased from 925 W
to 700 W

3 |90 800 | 150 |98 Stab_90_800_15 9.8xls | owerincreased from 600 W
to 800 W

4 |80 700 | 100 |98 Stab_80_700_10 9.8.xls | Startup fromrestat 700 W
Power decreased from 1900

5 |76 300 | 100 | 9.1 Stab_76_300_10_9.1.xs | "%
Power decreased from 1700

6 |81 300 | 101 |92 Stab_80_300_10.1_9.2xis | "%

7 8.1 400 10.0 10.8 Stab_81 400_10_10.8.xls Start up from rest at 400 W

8 |79 601 | 100 |108 Stab_79_601_10_10.8xs | ot up fromrestat 601 W
Power increased from 600 W

9 |81 1000 | 101 |92 Stab_81_1000_10.1_9.2.xls |  >/*

10 | 9.1 400 | 150 |99 Stab_91 400 15 9.9.xls | Swartup from restat 400 W
Power decreased from 1700

11 |91 300 |200 |95 Stab_91.300_20_9.5xls | ¢ 0o R Y
Power decreased from 1500

12 |79 300 | 100 |10.1 Stab_79_300_10_10.1.xis | (2" =

* The stability file names are given in such a way that they represent the operating conditions. For example in
case of the first file, Stab_90 500 10.1_9.8.xls: 90 represents pressure in bar,
500 represnts power in W,
10.1 represent the coolant flow rate in LPM,
9.8 represent coolant inlet temperature in °c.
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4.2.3 Large power decrease from stable steady state

Three tests are listed under this category in table-3. In all cases the final power was the same
and the initial power was different. Further the initial condition was stable and the final
condition was unstable for all the cases (see Fig. 18).
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Fig. 18: Large power decrease from different initial powers

4.3 General Characteristics of the observed instability

The amount of instability data generated in the present test facility is clearly inadequate
compared to the extensive instability data that exists for single-phase and two-phase loops. The
data generated is also inadequate to confirm certain characteristics of the instability like
hysteresis though its existence is suspected. Further, the instability thresholds have not been
successfully identified. Nevertheless several interesting characteristics have been revealed by
the limited unstable data generated in the facility as brought out below.
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4.3.1 Oscillatory Behaviour of Heater Inlet and Outlet temperatures

The minimum and maximum of the observed heater inlet and outlet temperature oscillations
for all the instability data at 8.1 and 9.1 MPa are shown in Fig. 19. Except for the start-up at 400
W, all other instability data is found to be either in the pseudocritical region or close to it. Thus
it appears that operation in or around the pseudocritical region is prone to instability for
supercritical fluids. However, the start-up instability is not necessarily a characteristic of
supercritical fluids. Instability during start-up has also been observed earlier for single-phase
natural circulation loops [33]. Thus apart from the instability around the pseudocritical region,
SPNCLs are also susceptible to other instability mechanisms of natural circulation.

Another interesting feature of the oscillations is that the inlet temperature remains almost
constant and only outlet temperature is oscillating (see Fig. 20). This, however, is not the case
with the instability observed with large power decrease as well as start-up (see also Fig. 20d).
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Fig. 19: Inlet and outlet temperatures of the instability data at different pressures

4.3.2 Time Series and Phase Plots

Analyses of the test data neglecting the initial transients often reveal many interesting
characteristics of the instability. Figures 21 to 23 show the time series of measured Ap
(pressure drop across the bottom horizontal pipe), Ti; & Tho (inlet and outlet temperatures of
the heater) and the AT, (temperature rise across the heater) for one thousand seconds after
neglecting the initial transients. As can be seen, the phase plot (shown for only one cycle)
shows a simple closed curve for the test data at 500 W (see Fig. 21d) which is markedly
different from that shown in figures 22d and 23d. From the time series given in Fig. 21 and 22,
it is easily seen that a near period doubling occurs between 500 W and 700 W. In general, the
period is expected to decrease with increase in power if the oscillatory mode remains the same.
Switching of the oscillatory mode as shown by the phase plots results in sudden period change.
Periodic oscillations depict a single closed phase plot. Both the oscillatory modes characterized
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by the phase plots in Fig. 21 and 22 are only nearly periodic as shown by the long duration
phase plots in Fig. 24. Also, the shape of the phase plots depends on the parameter spaces
chosen (See Fig. 25).
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Fig. 21: Time series and phase plot for the instability shown in Fig. 14

100 i
45) | | f |
~ ”w WL "‘1 A "\N" N E\N,JA\ 700 W; 9.1 MPa; 5 020
=" ’ q ‘ = WY 15.51pm & 9.8°C °
e o 30f 4 =30} =
§5° W““ H ‘H‘\ 2 2 ® o016
E ‘ I “\ ‘ \ ‘ g = 3
= \ ‘ W‘w‘ W““ il ‘w ” “ & 700 W; 9.1 MPa; < % s
g 2sf “'” m v § " 15.51pm & 9.8°C | 15‘ AN AN 2 012/ / 700 W; 9.1 MPa; |
700 W; 9.1 MPa; = Shliee /Y W‘}“‘, Wy Hﬂ"\‘”"”W‘NLW s 15.5 Ipm & 9.8 °C
0 15.5 lpm & 9.8 °C 0 ‘ ‘ ‘ o vy s ‘ ‘ ‘
4000 4250 4500 4750 5000 4000 4250 4500 4750 5000 4000 4250 4500 4750 5000 25 50 75
Time (s) Time (s) Time (s) Ap (mm-WC)
(a) Ap (b) Ty and T, (c) AT, (d) Phase plot

Fig. 22: Time series and phase plot for the instability shown in Fig. 15a
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5.0 STABILITY ANALYSIS

Nonlinear stability analysis code (NOLSTA) has been used for analysis of SPNCL with both open
and closed loop boundary conditions. The formulations and the dicretisation scheme are
explained in detail in Sharma et al [24].
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Fig. 23: Time series and phase plot for the instability shown in Fig. 15b
5.1 With Open-loop Boundary Conditions

In an open-loop, the heater inlet fluid temperature is fixed irrespective of the heater power.
For this analysis, all the heat supplied to the heater is assumed to be rejected in the cooler.
Further, the operating pressure of the loop, inlet fluid temperature to the heater and the
heater power are specified along with the entire geometry of the loop (hydraulic diameter, flow
area and length of each pipe section).
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Fig. 24: Long duration phase plots

NOLSTA code has been validated for open loop analysis with experimental data available in
literature. Lomperski et al. [18] have reported experimental natural circulation data for carbon-
dioxide at supercritical pressure for constant heater inlet temperature irrespective of power.
The loop orientation is HHHC having ID of 13.88 mm and height of 2 m. The code predicts the
steady state mass flow rate and heater outlet temperature appreciably well as shown in Fig. 25.
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The code predicts the threshold of instability as 9.8 kW (see Fig. 26) for this loop, whereas no
instability has been observed during the experiments.
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Fig. 25: Measured and predicted data of Fig. 26: Instability prediction for
Lomperski et al. [18] at 8 MPa and 24 Lomperski et al. [18] loop

°C heater inlet temperature

A parametric analysis has been carried out to study the effect of pressure and heater inlet
temperature on the steady state behaviour of SPNCL (HHHC orientation and considering it as an
open loop) with carbon-dioxide at supercritical pressures. The mass flow rate increases with
pressure at high powers in the friction dominant regime just as in two-phase NC systems as
shown in Fig. 27. The steady state natural circulation mass flow rate reduces significantly when
heater inlet temperature exceeds the pseudo-critical temperature (e.g. 37°C to 43°C) as shown
in Fig. 28. This is attributed to the reduction in the density difference between hot leg and cold-
leg resulting in reduced buoyancy head and increase in the frictional resistance as both the legs
become supercritical.

Considering the nature of the instability with no perturbation coming at heater inlet
temperature, SPNCL stability map was generated for HHHC orientation considering it as an
open loop. The stability map so generated is given in Fig. 29 which shows that the loop should
have been completely stable for all the operating powers for HHHC orientation as the maximum
power was limited to 2.4 kW during the present experiments. The stability threshold for open
loop boundary conditions has been found to be very less sensitive to the number of control
volumes used for analysis. Hence 28 control volumes have been used for generating the
stability map (Sharma et al. [24]). A typical stable and unstable case considering constant
heater inlet temperature for HHHC orientation at 9.1 MPa is shown in Fig. 30a. Figure 30b
shows the temperature oscillations for the unstable case which indicates the ever increasing
amplitude of temperature oscillation at heater outlet leading to flow reversal, whereas heater
inlet temperature remains constant. NOLSTA code at present cannot handle flow reversal.
However, the heater outlet temperature oscillations observed during experiment achieve a
limit cycle without any flow reversal (see figures 21 to 23).
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5.2 With Closed-loop Boundary Conditions

In a closed loop the coolant mass flow rate on secondary side of cooler (i.e. chilled water in
SPNCL) and its inlet temperature is kept constant as heater power is increased. The heater inlet
temperature is not fixed and increases with increase in heater power. For analysis of closed
loop, the rate of heat rejection in the cooler is evaluated based on the calculated overall heat
transfer coefficient for cooler and temperature difference between the primary and secondary
fluid. In this case, the operating pressure of the loop, coolant mass flow rate & inlet
temperature for secondary side of cooler and the heater power are specified along with the
entire geometry of the loop (hydraulic diameter, flow area and length of each pipe section).

The stability analysis was carried out for HHHC orientation considering closed loop boundary
conditions in which the heater inlet temperature is not specified. The results of the analysis are
shown in Fig. 31a & b. The loop is found to be stable at 600 W, becomes unstable at 800 W,
continues to be unstable at 1400 W and again becomes stable at 2100 W as shown in Fig. 31a.
The instability is predicted for heater inlet temperature varying from 29 to 63 °C (spread across
pseudo-critical temperature of 40°C at 9.1 MPa) as shown in Fig. 31b. Thus, the code is
predicting larger unstable zone as compared to the experiment. The stability threshold for
closed loop boundary conditions has been found to be sensitive to the number of control
volumes used for analysis (i.e. 28 control volumes predict instability from 900 W — 1800 W).
Hundred control volumes have been used in the present analysis with closed loop boundary
conditions.
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Fig. 31: Stability predictions for closed loop SPNCL with HHHC orientation
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Fig. 32: Prediction of instability at 800 W by NOLSTA code in more detail

Typical unstable behaviour predicted by NOLSTA code at 800 W is shown in more detail in Fig.
32a & b. Fig. 32a shows continuously increasing amplitude of flow oscillations up to flow
reversal. Fig. 32b shows increasing amplitude of both heater inlet and outlet temperature
oscillations having time period of 22.3 s (steady state loop circulation time of 25.5 s) indicating
oscillation growth as the mechanism for development of instability as predicted by Welander
for single-phase flow [32]. The Welander mechanism is observed for instability development
from steady state condition for SPNCL also as shown in figures 14-16. This is typical for
development of instability during sub-critical single phase natural circulation which mostly leads
to flow reversal, whereas, no flow reversal was observed during the experiments.
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Fig. 33: Prediction of stability map
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Fig. 33 shows the predicted stability map for the loop as a function of the secondary mass flow
rate. The predictions are made for a pressure of 9.1 MPa. The stable and unstable test data are
also shown in this figure. As expected the code predicts a larger unstable zone presumably due
to neglect of heat losses, boundary wall effect, axial heat conduction and multidimensional
effects.

6.0 CONCLUDING REMARKS

A research program on the supercritical pressure natural circulation is ongoing at BARC as part
of the Research Contract 14344 for the IAEA CRP on ‘Heat Transfer Behaviour and Thermo-
Hydraulics Code Testing for SCWRs’. As part of this, supercritical pressure natural circulation
experiments are proposed to be carried out with CO, as well as water. Currently, steady state
and stability experiments were completed with supercritical CO,. The steady state flow rate
data obtained were compared with the predictions of 1-D code NOLSTA which showed good
agreement. Instability was observed in the loop in a narrow window around the pseudo critical
region with low cooling water flow rate for the HHHC orientation. All other orientations of
heater and cooler were found to be stable. The stability data were compared with the
predictions of nonlinear stability analysis code. The analysis was also done with the open-loop
and the closed-loop boundary conditions. The analysis with the open-loop boundary conditions
did not show instability whereas closed-loop boundary conditions could predict instability. The
heat transfer coefficient was measured for subcritical water and supercritical CO,. The
supercritical heat transfer coefficient data showed a peak around the pseudocritical point. The
measured heat transfer coefficient data was compared with different correlations reported in
the literature. Good agreement was obtained with the McAdams [30] Jackson [31] and Jackson-
Fewster [28] correlations.

NOMENCLATURE

Flow area (m?)

Constant

Specific heat (J/kg/k)
Hydraulic diameter (m)
Friction factor

Acceleration due to gravity (m/s?)
Modified Grashoff Number
Enthalpy (j/kg/k)

Thermal conductivity (W/m/k)
Local Loss coefficient

Length (m)

Nusselt number

Constant

Pressure drop (Pa)

3

DT =2
) c
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q Heat flux (W/m?)

Q Heater Power (W)

ro Outside radius (m)

ri Inside radius (m)

Re Reynolds number

T Temperature (°C)

w Mass flow rate (kg/s)

Az Elevation difference between centre of heater and centre of cooler (m)
Greek

[e) Density (kg/m?>)

B Volumetric expansion coefficient (k™)

u Dynamic viscosity (Pa-s)
Subscripts

bulk

c cooler

ci Cooler inlet

co Cooler outlet

h heater

ho Heater outlet

hi Heater inlet

m Measured

pc Pseudocritical

wo Heater outer wall
Wi Heater inner wall
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Appendix-1: Steady state natural circulation data with CO,
Steady state natural circulation data generated with CO; are given in tables A1-1, A1-2, A1-3

and A1-4 are generated respectively for the HHHC, HHVC, VHHC and VHVC orientations. For the
HHHC orientation data are available for the clockwise and counterclockwise directions.
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