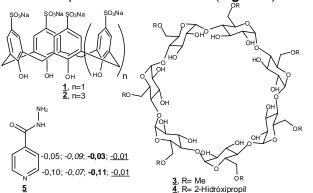
Avaliação dos complexos hóspede-hospedeiro entre a isoniazida e calix[4, 6]arenos e/ou β-ciclodextrinas empregando RMN de ¹H

Milena Galdino Teixeira¹ (PG), Cássia Gabriela Pereira Soares¹ (IC), Sergio Antonio Fernandes^{1*} (PQ), Mauro Vieira de Almeida² (PQ), João Vitor de Assis² (PG).
*santonio@ufv.br

¹Grupo de Química Supramolecular e Biomimética (GQSB), Departamento de Química, Universidade Federal de Viçosa, UFV, Viçosa, MG, 36571-000. ²Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário- Martelos, Juiz de Fora - MG, 36036-330.

Palavras-chave: Isoniazida, calix[n]arenos, ciclodextrinas, Tuberculose.

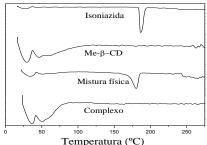

Introdução

Calix[n]arenos e ciclodextrinas são importantes macrociclos, sendo objeto de extensas pesquisas, tais como: agentes extratores, transportadores, fases estacionárias e sistemas de liberação controlada de moléculas bioativas. Visando melhorar a solubilidade e estabilidade química, vários fármacos tem sido encapsulados¹.

O presente trabalho tem como objetivo complexação entre realizar a os hospedeiros (p-sulfonato de sódio calix[4, 6]arenos (1 e 2), Metil-β-ciclodextrina (3), 2-Hidróxipropil-βciclodextrina (4)) e a isoniazida (5). O composto 5 é um fármaco de primeira linha utilizado no tratamento da tuberculose, porém administração tem sido comprometida devido ao desenvolvimento de bactérias resistentes e superresistentes².

Resultados e Discussão

Uma investigação preliminar utilizada para verificar a formação de complexos de inclusão foi realizada por meio da RMN de ¹H (**Figura 1**).


Figura 1: Isoniazida e carreadores (*p*-sulfonato de sódio calix[4, 6]areno, Hp- e Me-β-CD). Os números da esquerda para a direita representam a $\Delta\delta$, induzidos pela formação dos complexos $\underline{5/1}$, $\underline{5/2}$, $\underline{5/3}$ e $\underline{5/4}$, respectivamente.

Os resultados apresentados na **Figura 1** mostram que os hidrogênios da isoniazida sofreram variações nos deslocamentos químicos, dando indícios da complexação. A determinação da estequiometria dos

34ª Reunião Anual da Sociedade Brasileira de Química

complexos foi realizada através do método de Job³, sendo essa de 1:1 para todos os complexos. Prosseguindo com a caracterização foram realizadas medidas de DSC. Para o sistema <u>5/3</u>, observou-se que o comportamento térmico dos complexos é distinto quando comparado com os componentes isolados, portanto, temos mais um indício da complexação (**Figura 2**).

Os complexos e as misturas físicas, foram testados contra *Mycobacterium tuberculosis* H₃₇Rv ATCC nº 27294 no Lab. de Bacteriologia IPEC da FioCruz, obtendo-se uma concentração mínima inibitória (MIC) de 3,12 mg/mL.

Figura 2: Curvas representativas de DSC (DSC-60/Shimadzu) da isoniazida, Me-β-CD, mistura física ($\underline{\mathbf{5}}$ e $\underline{\mathbf{3}}$) e do complexo ($\underline{\mathbf{5}}$ / $\underline{\mathbf{3}}$).

Conclusões

A metodologia utilizada permitiu a preparação de complexos de calix[n]arenos e/ou ciclodextrinas com a isoniazida. Os complexos obtidos foram caracterizados por IV, DSC, RMN de ¹H e NOESY, e ainda, mostraram-se ativos contra *Mycobacterium tuberculosis* H37Rv em baixas concentrações.

Agradecimentos

¹a) Mokhtari, B.; Pourabdollah, K.; Dalali, N. *Incl. Phenom. Macrocycl. Chem.* **2011**, 69, 1; **b)** de Fátima, A.; Fernandes, S. A.; Sabino, A. A. *Curr.* Drug. *Discov. Tech.* **2009**, *6*, 151.

²Cardoso, S. H.; de Assis, J. V.; de Almeida, M. V.; Lourenço, M. C. S.; Vicente, F. R. C.; de Souza, M. V. N. *Quím. Nova.* **2009**, *32*, 1557.

³Job, P. Ann. Chim. **1928**, *9*, 113.