

First recommendations and research needs from a TSO perspective

International Experts' Meeting on Reactor and Spent Fuel Safety in the Light of the Accident at the Fukushima Daiichi Nuclear Power Plant

> 19-22 March 2012 Vienna

Thomas Schimpfke, GRS

Germany

Introduction (1)

GRS continuously tracks the progression of the accident

 GRS Emergency Center operated for about two month after accident initiation supporting BMU

- Description of efforts:
 - 24-hour shift work with ~20 persons a day
 - 50 experts were involved at GRS
 - 200 reports and short notes were produced

 Assessment of information available on the accident progression and the source term through

- NISA and TEPCO official reports
- IAEA reports
- JNES and ETSON partners
- mass media, incl. Japanese media (interpreter Jap. Ger)

Presently, observation of Fukushima power plant state is still going on

Introduction (2)

GRS provides interim report

Interim report of accident progression for BMU

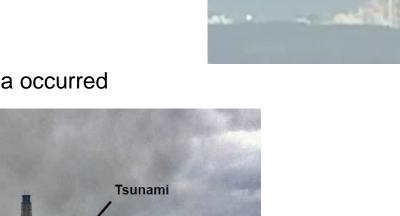
Preliminary findings

- External hazards were underestimated
- Detonations in reactor buildings caused loss of technical barriers and complicated Accident Management Measures
- Long lasting loss of power supply and of ultimate heat sink (UHS) obviously not taken into account during the planning of accident management (AM) measures
- Destruction of infrastructure not sufficiently regarded at organization and effectiveness of AM measures

open questions related to e.g.

- Hydrogen propagation
- State of core, RPV, and Primary Containment Vessel
- Validity of measured data and interpretation

Need for more detailed investigations to understand the accident and to derive implications for German NPPs


GRS

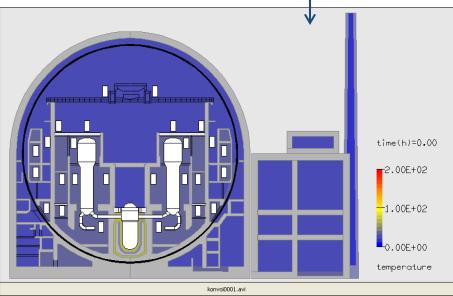
BMU funded post Fukushima research project at GRS (1)

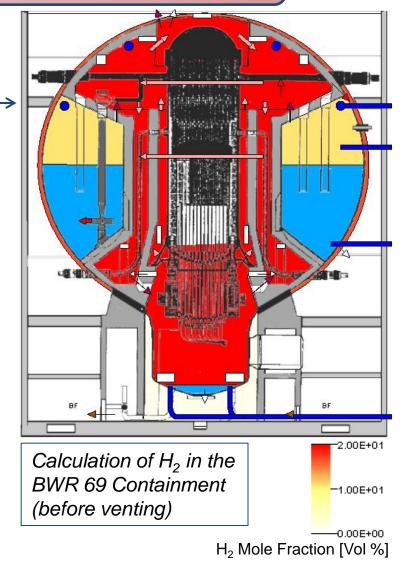
- "Questions on safety and risk after the nuclear accident in Japan"
- 3 Year project (Sept. 2011 Sept. 2014)
- Objectives
 - Clarification and assessment of the accident sequences as detailed as possible
 - Identification of possible threats to German NPPs under extreme natural hazards
 - Recommendations to improve measures against and during beyond design conditions
 - Updating of interim report including lessons learned, conclusions, and recommendations

BMU funded post Fukushima research project at GRS (2)

- In-depth investigation of accident and phenomena
 - Data collection of plant design, design conditions, natural impact and course of the accident (collaboration with JNES)
 - Analysing data for detailed investigation of accident sequence
 - Plausibility checks

Identification of major phenomena occurred





BMU funded post Fukushima research project at GRS (3)

Thermal-hydraulic analyses (ATHLET-CD/COCOSYS)

- "Fukushima-like" model based on BWR 69 with boundary conditions from accident analysis
- Analysis of different accident phases and of their influence / contribution to source term
- Evaluation of relevance for German NPPs by calculating the behaviour of a German PWR exposed to a similar hazard

BMU funded post Fukushima research project at GRS (4)

Response to natural external hazards

- Study transferability of earthquake and flooding impacts (combination + fire) to German NPPs: specification of beyond design nat. hazards
- Analysis of design requirements and protections of German NPPs against beyond design impacts
- Recommendations to improve protection in case of weaknesses identified

Vulnerability of electrical power supply

Source, TEPCO

- Analysis of layout of Japanese electrical grid
- Analysis of consequences of earthquake, tsunami and shut down of NPPs for power and emergency power supply
- Assessment of the behaviour of power supply in German NPPs under analogue conditions
- Recommendations for German grid and emergency power supply if necessary

BMU funded post Fukushima research project at GRS (5)

- Analysis of Accident Management Measures
 - Assessment of feasibility and effectiveness of AM measures in German NPPs under Fukushima-like conditions (long lasting SBO and loss of UHS, damaged infrastructures)
 - Identification of weak points and suggestion of possible improvements and extensions
- Investigation of cliff-edge effects in AM
 - Dynamic PSA analyses in combination with MELCOR calculations plus uncertainty analysis for a specific scenario at a German PWR
 - Identification of grace periods for AM actions (bleeding, feeding, venting) to avoid core damage

BMU funded post Fukushima research project at GRS (6)

Organisational factors in emergency management

- Investigation of organisational requirements, structures, and measures at Fukushima NPP and in relation to utility (TEPCO) and authority
- Comparison to safety relevant organisation in German NPPs and identification of potential improvements in structures and procedures

Development of methods for assessment of decision making processes

- Development of an approach to assess the appropriateness of measures and organisational structures to take reliable safety oriented decisions in emergency management
- Approach includes communication, collaboration and shared decision making of emergency management team and officer-in-charge in extreme situations

GRS

BMWi funded post Fukushima research project at GRS (1)

Research on specific phenomena and its modelling in German codes used for analysing German NPPs

- Test of coupled simulation tools ATHLET-CD/COCOSYS related to Fukushima relevant phenomena (model based on BWR 69)
 - Cooling of partly molten core and fission product release from core
 - Fission product retention inside the wetwell of BWR plants; pool scrubbing specifically for saturated water conditions
 - Fission product retention in filtered venting, question of adequate filter design

Structural mechanics analysis of dynamic containment behaviour

- Latest PWR type (KONVOI) under beyond design earthquake loads (primary earthquake and aftershock loads)
- Determination of floor response spectra and loading conditions on components and piping structures

BMWi funded post Fukushima research project at GRS (2)

- Spent fuel pool behaviour during severe accident sequences, application of analytical tools ASTEC and MELCOR
 - Station Black-out at PWRs and BWRs
 - Two operational cases: 1) during normal power operation
 2) core fully unloaded to SFP
 - Phenomena: Evaporation of pool, combined cladding oxidation by steam and air, zircon fire, relocation of molten material, fission product release, containment/ reactor building behaviour
- Improved fission product inventory determination in BWRs needed for source term prediction for high burn-up fuels
 - Further qualification of code for BWR by re-computing data from specimens

GRS

Other German research activities

- Karlsruhe Institute of Technology (KIT)
 - Saltwater cooling experiments at QUENCH facility in co-operation with JAEA
 - Comparison of air-transported radiological dispersion calculations (KIT, UMBW, DWD, BfS)

Helmholtz-Centre Dresden-Rossendorf (HZDR) + Dresden TU

- Contracted by operators
 - SFP bundle tests: (water, steam, air) coolability at decreasing water level
 - ATLET-CD versus ASTEC calculations on SA scenarios for PWR and BWR

Research need actually not addressed

Radiological dispersion calculations in water (ocean, lake, river)

Electrical energy supply in case of SBO

- Ensure power supply (e.g. batteries) for 10 hours
 - to keep plant in subcritical conditions and to remove residual heat from core
 - including power for instrumentation and lighting needed
- Develop accident measures to provide AC power within 10 hours by an additional emergency power generator
 - to feed systems needed for shut down of the plant and removal of decay heat from core and spent fuel pool
 - two physically separated connection points
 - Ensure installation and connection of additional emergency power generator in case of beyond design conditions (earthquake, flooding) and destroyed infrastructure
 - Necessary operating resources, tools and connection cables had to be provided

Cooling water supply

- Availability of an independent essential service water systems (ESWS) including power supply and needed auxiliary systems
 - Long term removal of residual heat and heat from needed systems (e.g. diesel)
 - ESWS should be protected against design events
- Availability of a mobile pump
 - Protected against beyond design events
 - Plant independent power supply
 - Two physically separated connection points to cooling system usable for cooling core and spent fuel pool
- For PWR creation of a RPV feeding possibility with borated water independent from ECCS
 - Avoid negative effects on existing procedures and equipment

Filtered Venting System

- Designed for accidental boundary conditions (SBO+Loss of DC power, unfavourable radiological conditions)
 - Exclusion of hydrogen deflagration/combustion inside of venting system
 - Long term operation has to be foreseen
 - Effective precautionary measures to avoid influence on other neighbour units

Destructed area

- Provide facilities to ensure access to buildings in case of destructed area (e.g. after external events)
 - If facilities not on site ensure that they can be delivered on time they are needed taken into account a possibly damaged infrastructure
- By planning emergency measures take into account that on a short time scale access to plant may be impossible

Spent Fuel Pool

- · Fuel element pools outside containment inside reactor building
 - Proof if flammable hydrogen concentration are possible
 - If necessary provide preferably passively acting installations (e.g. passive autocatalytic recombiners) to ensure operating mode beyond 10 hours

- As an accident management measure provide fixed installations for spent fuel cooling
 - to avoid the need to enter rooms that may at risk in case of challenge
 - Erroneous operation or inadvertent actuation should be excluded

Emergency control room

- If control room is not available, operations and procedures are initiated from emergency control room
 - Ensure that Accident Management Measures initiated by switching operations from control room can be started from emergency control room either
 - A corresponding extension of emergency control room function has to be done (including availability of needed information resources)

 Provide equipment for communication between emergency control room and the crises team center

Conclusion and Outlook

- Research projects started at GRS
 - Detailed investigation of accident sequence
 - Transferability to German NPPs
 - Code applicability on observed SA phenomena
- Based on current knowledge first recommendations for German NPPs are derived
- Further recommendations expected
 - More detailed information on accident sequence
 - Finalization of EU stress test review process
 - Information exchange on international activities