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A systematic study of spontaneous fission half-lives of superheavy nuclei in the framework of the macroscopic-

microscopic method was performed. The macroscopic-microscopic calculations of the half-lives consist in determining 
the collective potential energy V which splits into microscopic and smooth average macroscopic parts as well as into a 
nucleus mass tensor of the nucleus undergoing the fission process. The microscopic part of the energy is calculated 
using the single-particle Woods-Saxon potential with a universal set of parameters. Two models of the residual pairing 
interaction were studied. In the first approach we used monopole pairing (with constant matrix elements G). In the 
second approximation the pairing matrix elements were calculated with δ-force and are state dependent. As the 
macroscopic part of collective energy we examined four different macroscopic models of nuclear energy: Myers - 
Swiatecki liquid drop, Droplet expansion, Yukawa-plus-Exponential and the Lublin-Strasbourg Drop (LSD) model. The 
analysis covers a wide range of even-even superheavy nuclei from Z = 100 to Z = 126. The calculations of spontaneous 
fission half-lives (Tsf) were performed by means of a WKB approximation, in the multi-dimensional dynamical-
programming method (MDP) within parameters describe the shape of nuclei. The studies offer an opportunity of a 
comprehensive approach to a very interesting group of exotic heavier nuclei, which are currently investigated by 
experimenters.  
 

1. Introduction 
 

The region of superheavy nuclei is one of the most intensely studied ones in recent years. The authors of papers 
recently published [1 - 3] that overcome the barrier of the island of stability placed in the vicinity of the magic number 
Z = 114. 

It is believed that experiments in the near future will focus on nuclei in the neighborhood of Z = 112 - 122 and 
N ~ 170 - 190. Nevertheless, experimental evidence is still far from complete. Therefore, in preparing the experimental 
setups theoretical estimations are mainly used. 

The aim of this work is the evaluation of the properties of superheavy nuclei using different macroscopic-
microscopic models and a critical analysis of the results. Comparisons of these properties for different models allow for 
easier determination of identifying the interesting areas of superheavy nuclei.  

According to the Strutinsky [4] model, the collective potential energy V  is split into a shell shellEδ , the pairing 
correction parts, pairEδ  and the smooth average background energy smoothE  (macroscopic part). 

The shell correction energy [5] depends on the form of the single-particle potential used and we believe that the 
deformed Woods-Saxon potential with universal parameters [6] guarantees good behavior of the fission barrier with 
deformation.  

Literature offers many models of smooth energy. More popular ones include the drop model [7], droplet model [8], 
the so called Folded-Yukawa with an exponential model [9] and the Lublin-Strasburg Drop model (LSD-drop) [10]. 
The latter model (i.e. LSD-drop) is a revised and improved nuclear liquid drop, in which the corresponding parameter of 
the extended classical energy formula was adjusted to the currently known nuclear masses and fission barriers heights.  
 

2. Theory 
 

2.1. Nuclear Shape Parameterisation 
 

The shape of the nucleus is defined by the surface ∑ : 
 
 : ( , , ) 0f r θ φ =∑  (1) 
 

There are many multi-parameter descriptions of nuclear shapes in literature. One of the most recognised and 
comprehensive is the expansion of the radius R  into spherical harmonics: 
 
 0

2

ˆ( , , ) [1 ( , )]R R Yλμ λμ
λ≥ μ

θ φ α = + α θ φ∑∑  (2) 

 
In above equation 1/3

0 0R r A=  is the radius of the spherical nucleus with an atomic number A  and α̂  denotes the full 
set of deformation parameters. For the axial shapes only Eq. 2 simplifies to: 
 

 0 0
2

ˆ( , ) [1 ( )]R R Yλ λ
λ≥

θ β = + β θ∑  (3) 
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The β-expansion defined by Eq. (3) is usually limited to the low order coefficients: β2 (quadrupole), β3 (octupole) 
and β4 (hexadecapole) degrees of freedom. However, for significantly elongated and mass-asymmetric shapes, it is 
necessary to have liberty to choose higher order multiples. In our code the upper limit on the multiples is λmax = 9. 
 

2.2. Collective energy 
 
Collective energy V is calculated for a given nucleus by the macroscopic--microscopic model developed by Strutinsky 
[4]. In this model the fission barrier energy is split into two parts: the smooth macroscopic macrE  part and the 
microscopic energy consisting of the shell shellEδ  and pairing pairEδ  energies. 
 
 ( ) ( ) ( ),macr shell pairV E E E= β + δ β + δ β Δ   (4) 
 

The smooth part of energy macrE includes various nuclear drop models. In this study we tested the Myers - Swiatecki 
drop model [7], the droplet model [8], the Folded - Yukawa plus exponential model [9] and the Lublin-Strasburg drop 
model (LSD) [10]. 

The latest and most promising LSD model constitutes a revised and improved version of the nuclear liquid drop, in 
which the corresponding parameters of the extended classical energy formula were adjusted to the currently known 
nuclear masses and fission barrier heights. 

The shell energy correction shellEδ  depends on the form of the single-particle potential. There is a common belief 
that the deformed Woods-Saxon potential with a universal set of parameters [6] reflects the proper behavior of the 
fission barrier as a function of the deformation.  

Pairing energy pairEδ  is the third component of total energy. Two residual pairing interaction models were 
examined. In the first approach we used the monopole pairing (with constant matrix elements ˆ| |pair constV< νν μμ >= ). 
In the second approximation, the pairing matrix elements were calculated with the δ force [11]. 

 
2.3. Various nuclear liquid-drop models. 

 
If we normalize the energy to zero at spherical shape [8], the formulae for liquid drop model [3] comprising the 

surface and Coulomb energy can be written: 
 

 0 0
ˆ ˆ ˆ( ) ( ( ) 1) ( ( ) 1)C S

LD C SE E B E Bβ = β − + β −  (5) 
 

The numerical value of the parameters 0
CE  and 0

SE  is taken from a mass formula [3]. The entire deformation 

dependence is contained in ˆ( )SB β  and ˆ( )CB β  coefficients. They both can be expressed by two or three dimensional 
integrals: 
 

 2
0

1
4S

S

B dS
R

=
π ∫  (6) 
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0

1 ( )
32C

V

B W r dV
R

=
π ∫  (7) 

 
where W(r) denote the Coulomb potential: 
 

 ( )
| |V

drW r
r r

′
=

′−∫  (8) 

 
The improved version of the liquid drop model was proposed by Myers and Świątecki [5] in 1969 as the liquid drop 

model extension in the form of curvatures and corrections resulting from non – uniform distribution of charges on 
nucleus surface.  

Macroscopic energy can express in that model as: 
 

 ˆ ˆ ˆ ˆ( ) ( ( ) 1) ( ( ) 1) ( ( ) 1)DROPLET S S CUR CUR C CE b B b B b Bβ = β − + β − + β − +  
 

ˆ ˆ( ( ) 1) ( ( ) 1)R R w Wb B b B+ β − + β −                                                                    (9) 
 

The free parameters included in this Equation (bi, i = s, c, cur, r, w) are determined phenomenologically by their 
adjustment to nuclear masses, multipolar moments and barriers for fission. The functions Bi (i = s, c, cur, r, w) depend 
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on shapes of nuclei only. Two of them i.e. relative surface energy BS and relative Coulomb energy BC are defined as in 
the liquid drop model (Eqs. 5, 6).  

Coefficients BCUR is associated with the average curvature of nucleus surface, BR is associated with non-uniform 
charge distribution, and BW is used to describe the non-uniformity of charge distribution on the nucleus surface. The 
explicit equations for function Bi in the liquid droplet model are performed in [8]. 

The Yukawa - plus - exponential model [9] developed in 1979 it is a more universal model of macroscopic energy of 
nucleus. The following term describing the broadening of nucleus surface is added to the surface energy ES and relative 
Coulomb energy EC in that model: 

 3 3
2 2 3

08

r r
a

S
Y

c eE d rd r
R a r r

′−
−

′= −
′π −∫   (10) 

 
with R0 constituting the nucleus radius with sharp cut-off of matter density on the surface and a constituting the 
broadening function range (for a → 0 this term disappears). The well-known fact that the matter density on the surface 
of actual nuclei is not changed abruptly, but it decreases in accordance with the Yukawa model was considered in the 
present model. 

The macroscopic nuclear energy according to the curvature dependent LSD model proposed in [10] is provided in 
the formula bellow:  

 
2

2 3ˆ ˆ( ) (1 ) ( ( ) 1)LSD S S SE b I A Bβ = − κ β − +  
 

1
2 3

0
ˆ ˆ(1 ) ( ( ) 1) ( ( ) 1)C

CUR CUR CUR Cb I A B E B+ − κ β − + β −                                                    (11) 
 

Definitions of the curvature BCUR, Coulomb BC and surface BS coefficients remain the same as in the standard drop 
model (Coulomb and surface coefficients) or in the Droplet model (curvature coefficient BCUR).  

Such a liquid drop formula results in rms mass deviations equal to 0.698~MeV for binding energies of 2766 nuclei 
with Z > 8 and N > 8$ and rms = 0.88 MeV for 40 fission barrier heights experimentally known [10]. As it was shown 
in [12], the LSD model seems to be comparable in accuracy to the Thomas - Fermi macroscopic model and can be used 
as a fast and exact tool for calculation of the properties of the nuclei. 

 

2.4. Pairing model 
 

Two models of residual pairing interaction are studied in our work. The first approach is based on the use of 
monopole pairing, with constant matrix elements ˆ| |pair GV< νν μμ >= , while in the other approximation the pairing 
matrix elements are calculated with the δ-force, and they are state dependent [11]. 

The first approximation of the monopole type leads to the averaging of the superconductive properties of nuclei and 
reflects the structure of nucleon pairs rather weakly. A more realistic model consists of state-dependent pairing matrix 
elements ˆ| |pairG Vμν = < νν μμ > , where the pairing interaction ˆ

pairV  takes the following form: [13] 
 

 ( )1 2
0 12

1ˆ
4pairV V r− σ ∗σ= − δ  (12) 

 

The following values of pairing strengths 0V  were used [11]: 
 

 3
0 216p MeV fmV =  and 3

0 218n MeV fmV =  (13) 
 

for protons and neutrons respectively. 
The residual pairing interaction is treated in the BCS and Lipkin-Nogami (LN) approximation. In the case of the 

Lipkin-Nogami (LN) [14, 15] model the fluctuations of the particle number are reduced by adding the quadratic term 

( )2

2
ˆ ˆN N−λ −  to the Hamiltonian Ĥ  and by minimizing the average energy with respect to 2λ   

The procedure offers the following expression for the newly corrected energy:  
 

 2
ˆ

LN E NE = − Ψ Δ Ψλ  (14) 
 

where  

 
( )
( )

2

2

ˆ

ˆ
N

N

Ψ Δ Ψ
=

Ψ Δ Ψλ ,     ˆ ˆ ˆN N NΔ = − Ψ Ψ  (15) 

 

and N̂  the number operator and Ψ  is the BCS ground state.  
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2.5. Woods-Saxon potential 
 

The one-body Woods-Saxon Hamiltonian formula consists of the kinetic energy term T , the potential energy WSV , 
the spin-orbit term WS

soV  and the Coulomb potential CoulV  for protons: 
 

 ( );WS WSH T V r= + β +  ( ) ( ) ( )3
1; 1 ;
2

WS
so CoulV r V rβ + + σ β  (16) 

In the above equation 
 

 ( ) ( )
0 1

;
;

1 exp

WS

N ZV
N Zr

dist r
a

V
−⎡ ⎤± κ⎢ ⎥+⎣ ⎦β =

β⎡ ⎤
+ ⎢ ⎥

⎣ ⎦

, (17) 

and 
 ( ) ( );WS WS

so r p sV Vβ = −λ ⋅ ⋅ , (18) 
 

where ( );dist r β  denotes the distance of a point r  from the surface of the nucleus whereas 0 , , ,V aκ λ , are adjustable 
constants.  

The Coulomb potential CoulV  is assumed to be that of the nuclear charge equal to ( )1Z e−  and uniformly distributed 
inside the nuclear surface. In our calculations, we used the Woods-Saxon Hamiltonian formula with the so-called 
“universal” set of its parameters [6] which were adjusted to the single – particle levels of odd-A nuclei with 40A ≥ . 
 

2.6. Fission process 
 

Fission is treated as a tunneling through the collective potential energy barrier within the multidimensional 
deformation parameter space. The spontaneous-fission half-life is inversely proportional to the probability of 
penetration of the barrier: 
 

 log 2 1
sf n PT =   (19) 

 

Here, n is the number of assaults of the nucleus on the fission barrier per unit of time. For the vibration frequency 
0 1 MeVω =  assumed in our study one can obtains 20.28 110n s−= . The tunneling probability P in a one-dimensional 

WKB [] semi-classical approximation is derived using the following formula: 
 

 ( ) 121 SP e
−

= +   (20) 

 

where S(L) is the action integral evaluated along the fission path L(s), which minimizes the reduced action in the 
multidimensional collective space: 
 

 ( ) ( )[ ]
1

2

1/2

2
2 ( )

s

eff
s

S L B s V s E ds
⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭
∫   (21) 

 
Effective inertia associated with the fission motion along the path L(s) is 

 

 { }( )
,

( ) k l
kleff

k l

d ds B
ds dsB λ
β β= β∑   (22) 

 
where ds denotes the path-length element in the collective space. The integration limits 1s  and 2s  correspond to the 
classical turning points, determined by the equation ( )V s E= , where E is the total energy of the nucleus. Collective 
tensor components klB  are calculated In the adiabatic cranking model [17] and are dependent on collective coordinates. 

The dynamic calculation of the sfT  means a quest for the trajectory minL  which fulfills the principle of stationary 
action:  
 

 ( ) 0S Lδ =   (23) 
 

To minimize the action integral we used the multi-dimensional dynamic-programming method (MDP) [18]. 



 

53 

3. Results 
 

3.1. Macroscopic models 
 

Parameters of the macroscopic part of the energy of the atomic nuclei are usually fitted to experimental masses of 
nuclei (small deformations). Only the LSD-drop model [10] takes into account the heights of fission barriers. This leads 
to the effect of good conformities of each model for small deformations and divergences for deformations leading to the 
fission. This problem is illustrated in Fig. 1. where as an example, the diagrams for potential barriers for various models 
were made [12]. 

It can be sees that fission barriers in the liquid drop model [7] are relatively high and wide. It is especially visible in 
heavier isotopes. This effect leads to considerably longer spontaneous fission half-lives for heavier isotopes [19]. 

An interesting behaviour of fission barriers obtained with the droplet model [8] can be observed. For lighter 
isotopes, the barriers are in agreement with the liquid drop ones while for heavier nuclei a tendency to a large reduction 
of the height and thickness of the barrier can be noticed. In earlier papers dealing with the spontaneous fission half-lives 
this tendency was connected with an abrupt reduction of sfT  of heavier isotopes [20].  

The Yukawa – plus - exponential model offers the macroscopic fission barriers similar to that of the drop model. 
However, the barrier heights are slightly lower in the case of heavy isotopes. This decrease in barrier heights influences 
spontaneous fission half-lives sfT : for heavier isotopes sfT  becomes considerably longer. A similar effect was observed 
in this study [21, 22]. 

The barriers for the new LSD model [10] change very weakly with the increasing neutron number N and become 
only slightly higher and wider.  

The studies conducted show that different models for the smooth part of the energy significantly modify the height 
and the width of the fission barrier and consequently spontaneous fission half life.  

Therefore it is important to use the correct model especially for large deformations. It seems that the LSD-drop 
model is the best. 

 

 
Fig. 1. Diagrams illustrating macroscopic barriers in Drop, Droplet, Folded-Yukawa (Fold-Yuk) 

and Lublin - Strasbourg (LSD-drop) models for various isotopes of nucleus Z = 110. 
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In Fig. 2 the estimates of the spontaneous fission half-
lives sfT  for isotopes Z = 114 are showed. Theoretical 

results are obtained using the four models for 
macroscopic energy as referred to above.  

The data obtained in the liquid drop model are 
represented by full triangles and the results obtained with 
the droplet model by squares. The estimates made with 
the LSD are marked with open triangles. It is seen that 
the spontaneous fission half-lives differ considerably 
depending on the model used (1-5 orders of magnitude).  

The calculations for the whole region showed that for 
the liquid drop and folded Yukawa models the results are 
too large as compared to the experiment, while these for 
the droplet and LSD models are closer to the measured sfT .  

 
3.2 Influence of pairing forces on fission 

 
Pairing plays an important role in macroscopic-

microscopic description of the fission process. We 
discuss two kinds of pairing models: monopole 
(G = const) and state dependent ( δ -type force). As an 

illustration of the effect of different pairing models we show the barriers and spontaneous fission half lives for Z = 112 
and Z = 116 isotopes. The barriers of Z= 1 12 and 116 isotopes are shown in Fig. 2 for both models: G=const and δ - 
interaction). Unprojected (G = const and  + BCS) and particle number projected (G = const + LN and δ + LN) 
methods are taken into account.  

One can see that in all pairing models examined barriers height changes are approximately similar together along the 
neutrons number N. 

In the case of δ - pairing interaction, spontaneous fission barriers become higher (the coupling constant 0V  
estimated in [11] is probably too high) than in the case of the G = const model. Our study indicates that model pairing 
forces weakly influences on the height of fission barriers. The barrier heights shown in Fig. 3 change more smoothly as 
a function of N in the case of LN projected energies, as compared to the case without projection.  

 

 
Fig. 3. Barrier height of Z = 112 and 116 isotopes for the case of different pairing models. 

 
The spontaneous fission half-lives of the Z = 112 and 116 isotopes are shown in Fig. 4. As in the case of fission 

barriers, the LN projected sfT  results are smoother, as compared to the unprojected ones. The most important finding is 

that different pairing models substantially influence the spontaneous fission half-lives (3-5 orders of magnitude). The 
differences between the projected and unprojected models are smaller (1 - 2 orders). Projected results are a quite close 
to the experimental data.  

 

Fig. 2. Spontaneous fission half-lives sfT  (in years) for 
even-even isotopes with the atomic number Z = 114 
plotted as a function of the neutron number N. 
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Fig. 4. Spontaneous fission half-lives sfT  (in years) for even-even isotopes with atomic number Z = 112 
and 116 plotted as a function of the neutron number N. 

 
4. Conclusions 

 
Spontaneous fission half lives strongly depended on two main factors: potential energy represented by the collective 

energy collV  and kinetic energy proportional inversely to the so called collective mass parameter klB  for multipole 
vibrations. 

In our paper in the MM model we examined different forms of collective energy collV . Our studies show that 
macroscopic energy influences significantly calculated spontaneous fission half-lives sfT  (1 - 5 orders of magnitude). 

For the liquid drop and folded Yukawa models the results of sfT  are too large as compared to the experiment, while 
these for the droplet and LSD models are closer to the measured sfT .  

The LSD and droplet model seems to be suitable and can be used as a fast and exact tool for calculation of the 
spontaneous fission half lives sfT .  

The different pairing models substantially influence the spontaneous fission half-lives (3 - 5 orders of magnitude). 
The fission barriers of the δ-pairing force model are similar to that of the classical pairing, although they are slightly 

higher.  
The differences between the projected and unprojected models are smaller (1 - 2 orders).The state dependent δ-type 

force, significantly influences the spontaneous fission half lives. At the same time, the isotopic systematic of sfT  does 
not change. 

The LN fission barriers are few hundreds of keV lower than the barriers calculated within the BCS approach. 
Differences between projected and unprojected results of sfT  are 1 - 2 orders of magnitude. 

Investigations of the pairing interaction and the macroscopic nuclear energy should continue in order to obtain the 
proper coupling constants and the most appropriate fission barriers and spontaneous fission half lives. 
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