National Science Center "Kharkov Institute of Physics and Technology"

HIGH EFFICIENCY OF MIXED Th-U FUEL UTILISATION IN INNOVATIVE NUCLEAR BURNING WAVE REACTOR

Sergii Fomin, A. Fomin, Yu. Mel'nik, V. Pilipenko, N. Shul'ga

Akhiezer Institute for Theoretical Physics, NSC KIPT, Kharkov, Ukraine

e-mail: sfomin@kipt.kharkov.ua

IAEA TM FR

11-13 September 2013

AITP NSC KIPT

Nuclear Power Problems

- **Safety !!!** (after Chernobyl accident)
- **Closed fuel cycle** (fuel reproduction)

Atomic Bomb House, Hiroshima

- Ecological problems (nuclear waste utilization)
- Nonproliferation of fissile materials (nuclear terrorism resistance)

Explored Earth reserves of Uranium

Nuclear plants are provided with Uranium-235 only until 2035!

Forecast world demand for Uranium up to 2100

History of the B'n'B and TWR Concepts

 \neq

Breed'n'Burn concept

S.M.Feinberg and E.P.Kunegin, **1958:** "Nuclear Power Plants, Part 2, Discussion", Proc. 2nd U.N. Int. Conf. Peaceful Uses of Atomic Energy,v.9, p.447, U.N., Geneva.

K.Fuchs and H.Hessel, 1961: "Uber die Moglichkeiten des Betriebs eines Natururanbrutreaktors ohne Brensttoffaufbereitung", Kernenergie, v.4, p.619.

J.S.Slesarev, V.A.Stukalov, S.A.Subbotin, 1984: "Problems of development of fast reactors self-provision

without fuel reprocessing", Atomkernenenergie, Kerntechnik, v.45, p.58.

V.Ya.Goldin, D.Yu. Anistratov, 1992: "Mathematical modelling of neutron-nuclear processes in safe reactor", Preprint IMM RAS N. 43. ...

Traveling Wave concept

L.P. Feoktistov, 1988: An analysis of a concept of a physically safe reactor. Preprint IAE-4605/4; & **1989**: "Neutron-fission wave", Sov. Phys. Doklady, v.34, p.1071. "Variant of safe reactor", *Nature*, v.1, p. (in Russian)

A.I.Akhiezer et al.,1999: "Propagation of a Nuclear Chain Reaction in the Diffusion Approximation", *Physics of Atomic Nuclei, v.62, p.1474.* 2001: "Slow Nuclear Burning", *Problem of Atomic Science & Technology*, v.6, p.272.
V.Pilipenko et al. 2003 ICAPP'03, Paper 3169, Spain.
S.Fomin, Yu.Mel'nik, V.Pilipenko, N.Shul'ga, 2005
Annals of Nuclear Energy (ANE), v.32, p.1435.....

X.-N.Chen, W.Maschek 2005: ANE, v.32, p.1377. B.Gaveau et al., 2005: Nucl.Eng.Design, v.235, p.1665.

The Evolution of the Traveling-Wave Concept

1988

Lev Feoktistov

works on the

and publishes

an analysis of

a concept of a

physically safe

reactor

concept in Russia

1958

Saveli M. Feinberg proposes a "breedburn" reactor in which unenriched fuel is moved around the core to sustain fission 1979 Michael J. Driscoll and others at MIT further evaluate breed-burn reactor ideas

Edward Teller, Lowell Wood (now at Intellectual Ventures), and others at Lawrence Livermore Lab detail ways to make breed-burn waves travel through a stationary fuel supply 2000

Hugo van Dam publishes mathematical analyses of waves of fission moving inside nuclear fuels • 2001 Hiroshi Sekimoto begins a series of conceptual studies of various kinds of TWRs Early 2000s

N. Shul'ga study the

burning wave in fast

reactors in the Ukraine

Sergii Fomin and

Intellectual Ventures begins detailed physics and engineering studies of the feasibility, cost, and features of various TWR designs

Lev Feoktistov (USSR, 1988):

Nuclear Burning Wave

L.P. Feoktistov. Preprint IAE-4605/4, 1988. L.P. Feoktistov. *Sov. Phys. Doklady*, 34 (1989) 1071.

Concept & Analytical approach

Nuclear ashes zone Extinction zone Burning zone Breeding zone Fertile zone zone

²³⁸U (n, γ) \rightarrow ²³⁹U (β) \rightarrow ²³⁹Np (β) \rightarrow ²³⁹Pu (n,fission) ... <u>T_{1/2} \approx 2.35 days</u>

$$\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial z^2} + v n \left(\sigma_{a8} N_8 - \left(\sigma_a + \sigma_f \right)_{Pu} N_{Pu} \right)$$

$$\frac{\partial N_8}{\partial t} = -vn\sigma_{a8}N_8; \quad \frac{\partial N_9}{\partial t} = vn\sigma_{a8}N_8 - \frac{1}{\tau_\beta}N_9$$

 $\frac{\partial N_{\rm Pu}}{\partial t} = \frac{1}{\tau_{\rm R}} N_9 - \nu n \left(\sigma_a + \sigma_f\right)_{\rm Pu} N_{\rm Pu}$

$$N_{cr}^{Pu} = \frac{\sum_{i} \sigma_{ai} N_{i}}{(\nu - 1)\sigma_{f}^{Pu}} \longrightarrow \begin{bmatrix} N_{eq}^{Pu} \\ N_{eq}^{Pu} = \frac{\sigma_{a8} N_{8}}{\sigma_{f}^{Pu} + \sigma_{a}^{Pu}} & x = z + Vt \end{bmatrix}$$
Feodorid

 $N_{eq}^{Pu} > N_{cr}^{Pu}$

Feoktistov criterion

Goldin & Anistratov (USSR, 1992): Nuclear Burning WaveDeterministic approachV. Goldin, D. Anistratov. Preprint IMM RAS # 43, 1992.U-Pu fuel cycle1d non-stationary problem

Edward Teller (USA, 1997):	Traveling Wave Reactor	Monte Carlo simulation
_E.Teller. Preprint UCRL-JC-129547, LLNL,1997	Th-U fuel cycle	
Hiroshi Sekimoto (Japan, 2001):	CANDLE	Deterministic approach
H.Sekimoto et al., Nucl. Sci. Eng., 139 (2001) 3	06. U-Pu fuel cycle,	Stationary problem: $x = z + Vt$

Edward Teller (LLNL, USA) 1997: Traveling Wave Reactor

E.Teller, 1997. Nuclear Energy for the Third Millennium. Preprint UCRL-JC-129547, LLNL.

Non-Stationary Theory of Nuclear Burning Wave

S. Fomin, Yu. Mel'nik, V. Pilipenko, N. Shul'ga, A. Fomin (1st IC "Global 2009", Paris, paper 9456)

Non-Stationary Non-Linear Multi-Group Diffusion Equation of Neutron Transport $\frac{1}{v^g} \frac{\partial \Phi^g}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} r D^g \frac{\partial \Phi^g}{\partial r} - \frac{\partial}{\partial z} D^g \frac{\partial \Phi^g}{\partial z} + \left(\Sigma_a^g + \Sigma_{in}^g + \Sigma_{mod}^g - \Sigma_{in}^{g \to g} \right) \Phi^g - \Sigma_{mod}^{g-1} \Phi^{g-1} = \chi_f^g \sum_{g'=1}^G (v_f \Sigma_f)^{g'} \Phi^{g'} - \sum_j \chi_d^j \sum_l \beta_l^j \sum_{g'=1}^G (v_f \Sigma_f)^{g'} \Phi^{g'} + \sum_j \chi_d^j \sum_l \lambda_l^j C_l^j + \sum_{g'=1}^{g^{-1}} \Sigma_{in}^{g' \to g} \Phi^{g'}$

 $\frac{\partial N_{10}}{\partial t} = \sum_{l=1,4,5,6,7} \left(\sum_{g} \sigma_{fl}^{g} \Phi^{g} \right) N_{l}$

Together with Fuel Burn-up Equations and Equations of Nuclear Kinetics

$$\frac{\partial N_l}{\partial t} = -\left(\sum_g \sigma_{al}^g \Phi^g + \Lambda_l\right) N_l + \left(\sum_g \sigma_{c(l-1)}^g \Phi^g + \Lambda_{(l-1)}\right) N_{(l-1)}, \quad (l = 1 \div 8); \quad \frac{\partial N_9}{\partial t} = \Lambda_6 N_6;$$

of Precursor Nuclei of Delayed Neutrons

$$\frac{\partial C_l^j}{\partial t} = -\lambda_l^j C_l^j + \beta_l^j \sum_g (\nu_f^g \Sigma_f^g)_l \Phi^g$$

Metal fuel (44%) Pb-Bi coolant (36%) CM - Fe (20%)

Nuclear Burning Wave in Fast Reactor with U-Pu Fuel

Reactor radius R=117cm, Reactor composition (volume fractions): Fuel (238 U) = 44%, Coolant (Pb-Bi) = 36%, Constr. material (Fe) = 20%

Neutron Flux Φ (r, z, t) & Plutonium Concentration N_{Pu} (r, z, t)

The 2D-distribution $N_{U}(r,z)$ (×10²¹ cm⁻³) of the ²³⁸U isotope in the NBW regime at different time moments

Fuel burn-up

Nuclear burning wave in 5m length cylindrical FR for different reactor radius *R*

S. Fomin et al., *Progress in Nuclear Energy*, 50 (2008) 163-169.

R = 150 cm (red line) ; 120 cm (green line) ; R = 110 cm (blue line)

Dependence of the NBW velocity V on the reactor radius R

S. Fomin et al., Global 2009 (Paris, France) paper 9456

Reactor Power Control by Reflector Efficiency

2009: NBW reactor with mixed Th-U-Pu fuel cycle

Example:

Metallic fuel 232 Th (62%) + 238 U (48%) volume fraction = 55%, fuel porosity p = 0.35; Coolant (Pb-Bi eutectic) vol. frac. = 30%, Constr. materials (Fe) vol. frac. = 15%; R = 390 cm

NBW reactor with mixed Th-U-Pu fuel cycle

Example: Metallic fuel 232 Th (62%) + 238 U (48%) volume fraction = 55%, <u>fuel porosity p = 0.35</u>; Coolant (Pb-Bi eutectic) vol. frac. = 30%, Constr. materials (Fe) vol. frac. = 15%; R = 390 cm

FIG. 3. the axial distributions (*z*, cm) of the nbw characteristics: (a) scalar neutron flux Φ (×10¹⁵ cm⁻² s⁻¹); (b) concentration *n* (×10²¹ cm⁻³) for ²³⁹Pu (solid curves) and ²³³U (dots); (c) fuel burn-up depth *b* (%) for the fuel components ²³⁸U–Pu (solid curves) and ²³²Th (dots) for calculation variant 1 for time moments $t_1 = 4$, $t_2 = 100$ days, $t_3 = 10$, $t_4 = 30$, $t_5 = 45$, $t_6 = 60$ and $t_7 = 70$ years.

Fuel burn-up for Th-U-Pu cycle

Stability of the NBW Regime

Perturbation of integral neutron flux F_{int} (×10²² cm/s) caused by an external neutron source via time *t* (days). The source with intensity $Q_{ext} = 2 \times 10^{11}$ (cm⁻³ s⁻¹) starts at $t_0 = 3650$ days, lasts during 1 hour and is situated at 160 < *z* < 170 cm

Negative Reactivity Feedback: Stability of the NBW Regime

Variation of the reactivity ρ (dollars) with time *t* (days) along the variation of the volume-averaged neutron flux F_{av} (×10¹⁵ cm⁻² c⁻¹)

Main features of NBW reactor with mixed Th-U-Pu fuel cycle

Reactor composition (vol. frac.): Fuel = 55% (F_{Th} = 62%, p = 0.20), Coolant = 30%, CM = 15%, **R = 215 cm**

- negative feedback on reactivity intrinsic safety (human factor excluding)
- long-term (decades) operation without refueling and external control
- possibility of ²³²Th and ²³⁸U utilization as a fuel
- production of ²³⁹Pu (4%) and ²³³U (4%) for a "future" reactor fuel
- fuel burn-up depth for both 238 U and 232 Th \approx 50%
- neutron flux in active zone ≈ 2.10¹⁵ n/cm²s
- neutron fluence during the whole reactor campaign $\approx 3.10^{24}$ n/cm²
- energy production density in active zone ≈ 200 W/cm³
- total power at the steady-state regime ≈ 1.2 GW
- wave velocity at the steady-state regime ≈ 2 cm/year
- possibility of nuclear waste burn out (expected)

Our Publications:

- S. Fomin et al., Annals of Nuclear Energy, 32 (2005) 1435-1456.
- S. Fomin et al., *Problems of Atomic Science & Technology*, 6 (2005) 106-113.
- S. Fomin et al., Nuclear Science & Safety in Europe. Springer (2006) 239-251.
- S. Fomin et al., *Problems of Atomic Science & Technology*, 3 (2007) 156–163.
- S. Fomin et al., *Progress in Nuclear Energy*, 50 (2008) 163-169.
- Yu.Mel'nik et al., Atomic Energy, 107 (2009) 288-295. (in Russian)
- S. Fomin et al., IC Global 2009, Paris, France (2009) Paper #9456.
- S. Fomin et al., ICAPP 2010, San Diego, USA (2010) Paper #10302.
- S. Fomin et al., *Progress in Nuclear Energy*, 53 (2011) 800-805.
- S. Fomin et al., JKNU, 1041, "Nuclear, Particles, Fields" #2/58 (2013) 49-56.
- S. Fomin et al., IAEA IC FR-13, Paris, France (2013) in print.

INTERNATIONAL ATOMIC ENERGY AGENCY

Nuclear Burning Wave Benchmark Specifications for the IAEA Coordinated Research Projects

Analytical and Experimental Benchmark Analysis on Accelerator Driven Systems & Technical Working Group – Fast Reactors

> Compiled By S. Fomin, Yu. Melnik, V. Pilipenko, N. Shul'ga

Akhiezer Institute for Theoretical Physics National Science Center "Kharkov Institute of Physics and Technology" National Academy of Sciences of Ukraine

sfomin@kipt.kharkov.ua

Issued 2009-03-30

Thank you for attention !

Technology Entertainment Design, USA (February 12, 2010)

http://www.ted.com/talks/bill_gates.html

No reproduction or distribution without express written permission of TerraPower, LLC

A breed-and-burn reactor:

- 1. First breed fissile Pu-239 in U-238 fuel, using leakage flux from burning region
- 2. Newly created fuel can directly replace discharged fuel in burning region and sustain criticality

Schematic illustration of a two-zone TWR:

TerraPower TWR Technology Development

- Development began in 2006
- Core performance modeling verifies minimum burn-up breed and burn fuel cycle
- Conceptual design of TWR plant completed in 2009, verified commercial viability
- Conceptual Design of TP-1 completed 4th Q -2010
- Engage partner(s) by end-2011
- Begin TP-1 construction 2015
- Commence TP-1 operations 2020
- Start commercial TWR construction 2025
- Fuel and Materials Irradiation Program parallels (start 2009)

TorraP

02//11//2010

TP-1 Design P	arameters
Power Level	
	200 MW th 500 MW
Operating Temperatures	360°C / 510°C
Availability	90% average over 5 yr period
Minimum Lifetime	40 years
Fuel Type	U-Zr alloy pins in HT-9 clad (130 MTU core)
Primary Pumps	Mechanical (2)
Intermediate Heat Exchanger	Printed Circuit (4)
	02//11//20

Startup problem of the NBW Reactor

Smooth Startup of the NBW Reactor

