Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials, June 12-14, 2013

Tools and applications for core design and shielding in fast reactors

Presented by: Reuven Rachamin

Reuven Rachamin I Institute of Resource Ecology I www.hzdr.de

- Modeling of SFR cores using the Serpent-DYN3D code sequence
- Core shielding assessment for the design of FASTEF-MYRRHA
- Neutron shielding studies on an advanced Molten Salt Fast Reactor (MSFR) design

Modeling of SFR cores using the Serpent-DYN3D code sequence Reuven Rachamin, Emil Fridman

Introduction

- DYN3D nodal code
 - Developed at HZDR for LWR application
 - **3D** full core steady-state and transient calculations
 - Multi-group diffusion and SP3 solvers
 - Square and hexagonal geometries
 - □ Is being extended for SFR analysis
- Important tasks
 - Selection of appropriate lattice code
 - Establishment of a few-group XS generation procedure
- Candidate lattice codes
 - Serpent Monte Carlo transport code
 - HELIOS deterministic lattice transport code

Objectives

- To establish few-group XS generation procedure
 - For SFR cores analysis with DYN3D
 - Using Serpent
- To investigate the performance of Serpent-DYN3D sequence
 - Via 2D full core modeling of SFR core

Reference SFR core

- "Working horse" MOX ESFR core design
 - Proposed in the frame of the Collaborative Project on <u>European Sodium Fast Reactor (CP ESFR)</u>

Power density = 206 W/cm³

Selection of few-group energy structure

- 33 group structure is not appropriate
 - Very poor statistics in thermal energy groups
- 24 group structure is selected
 - Groups 24 to 33 collapsed into a single thermal group

Few-group XS Generation - Super-cell Models

Radial Reflector Model

Results: k-eff

Full Core

Max. rel. diff. = 32 pcm

Ave. STDEV Serpent = 6 pcm

Parameter	Stage	Serpent	DYN3D	Diff., pcm Serpent vs. DYN3D
k _D , pcm	BOL	-1062	-1072	-10
	EOL	-723	-723	0
CVR, pcm	BOL	2821	2850	29
	EOL	3654	3702	47
Total CDS worth, pcm	BOL	-4678	-4629	49

Ave. STDEV k-eff (Serpent) = 6 pcm

Results: Power Distribution at BOC

Control Rods Out

Rel. diff., % Serpent vs. DYN3D

Max. rel. diff. = 2.1 % Ave. rel. diff. = 0.6 %

Results: Power Distribution at EOC

Control Rods Out

Serpent vs. DYN3D

Max. rel. diff. = 4.5 % Ave. rel. diff. = 1.4 %

Member of the Helmholtz Association Reuven Rachamin I Institute of Resource Ecology I www.hzdr.de

Results: Power Distribution at BOC

Control Rods In

Max. rel. diff. = 5.2 % Ave. rel. diff. = 1.2 %

Outlook

- Serpent based few-group XS were used by DYN3D
 - 2D full core nodal diffusion calculations of ESFR core
- DYN3D results were verified against full core Serpent MC solution
- Very good agreement between the codes was obtained
- DYN3D-SFR required modifications
 - Updating thermal-hydraulic module
 - Development of thermal-mechanical module
- Validation and Verification
 - Benchmarks on EBR and Phoenix experiments

Core shielding assessment for the design of FASTEF-MYRRHA

Anna Ferrari

Work done in the frame of the FP7 European <u>Central Design Team (CDT)</u> Project, which worked to design the <u>FA</u>st <u>Spectrum Transmutation Experimental Facility</u> (FASTEF), to support the construction of MYRRHA

Introduction

- The MYRRHA research facility (SCK·CEN Mol, Belgium):
 - lead-bismuth eutectic (LBE) cooled reactor
 - working both in critical and in sub-critical operation modes

- One of the many challenges of the MYRRHA design is:
 - shielding of the accelerator tunnel and the reactor building

Shielding and activation analysis

Objectives & Methodology

• Main goal:

 To develop a reliable methodology based on Monte Carlo method for the assessment of the main shielding and activation

Analysis methodology:

- MCNPX CDT models of the MYRRHA critical and subcritical core
 - characterize the neutron radiation fields on suitable surfaces around the core barrel
 - build a complex source terms as an input for the FLUKA simulations
- FLUKA simulations
 - b detailed model for shielding and activation analysis
 - using the MCNPX evaluated spectra as a source terms

Shielding and activation analysis

The FLUKA detailed model

Lateral shielding analysis:

- FLUKA detailed model from the core barrel to the shielding walls and the reactor cover
- <u>conservative source term</u>: critical operation mode

Vertical shielding analysis:

- FLUKA detailed model from the core barrel to the reactor cover and the final wall beyond the last magnet of the proton beam line
- <u>conservative source term</u>: sub-critical operation mode

Results: Ambient dose equivalent rate

The results demonstrated a sufficient lateral radiation containment

Outlook

- A methodology based on combined use of two MC codes (MCNPX and FLUKA) has been developed
 - a powerful tools for shielding optimization of the MYRRHA facility
- The developed methodology can address the following key points:
 - optimization of the cover design of the reactor vessel
 - optimization of the upper vertical part of the reactor building
 - choice of structural materials close to the spallation target

Neutron shielding studies on an advanced Molten Salt Fast Reactor (MSFR) design Bruno Merk, Jörg Konheiser

Introduction

- Advantages of MSFR:
 - online reprocessing and refueling
 - no solid fuel production
 - always negative feedback
 - draining of the fuel
- Material damage in the MSFR is significantly high
 - high neutron flux level in the core
 - high share of neutrons above 1MeV
 - □ fast neutron are born directly at the core vessel walls
- The neutron fluence in the core and outer vessels should be evaluated

Advanced MSFR model

 Modeling of a 2D advanced MSFR using the HELIOS unstructured mesh neutron transport code

- 1. Core region: mixed fuel-fertile salt
- 2. Blanket region: pure fertile salt
- 3. 20 mm-thick core vessel
- 4. 30 mm-thick outer vessel (safety related vessel)
- 5. 20 cm-thick graphite reflector poisoned with 5% natural boron

3000 MWth reactor based on the Thorium fuel cycle

Neutron flux distribution

In the core and blanket regions

Epithermal neutron flux (< 0.1 MeV)

4.662E+15

Fast neutron flux (> 0.1 MeV)

• Fast neutron flux:

strongly bound to the core vessel

• Epithermal neutron flux:

small change at the boundary between the core and blanket

Neutron flux distribution

In the core vessel walls

- Very high neutron flux
 - leads to a very short time to reach the fluence limit value for materials under irradiation (10²⁰ n/cm²)
- A failure of the core vessel has to be taken into account

Shielding optimization of the outer vessel

- The outer vessel has to fulfill a safety function
- **Optimization strategy:** stepwise increasing of the blanket region

IAEA TM, June 12-14, 2013

Member of the Helmholtz Association Reuven Rachamin I Institute of Resource Ecology I www.hzdr.de

Optimized geometry

Outlook

- A 2D advanced MSFR model was analyzed
 - Using the HELIOS deterministic lattice transport code
- High neutron flux was demonstrated in the core vessel walls
 - The core vessel cannot carry any safety related function
- The outer vessel has to fulfill the safety function
- The outer vessel can be shielded by a well blanketed system
 - keep the fluence within the limit of 10²⁰ neutrons/cm² for a reasonable operation of 80 years.

Thank you for your attention!

IAEA TM, June 12-14, 2013

Member of the Helmholtz Association Reuven Rachamin | Institute of Resource Ecology | www.hzdr.de