Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials, June 12-14, 2013

Tools and applications for core design and shielding in fast reactors

Presented by: Reuven Rachamin

Reuven Rachamin I Institute of Resource Ecology I www.hzdr.de

- $\mathcal{L}_{\mathcal{A}}$ Modeling of SFR cores using the Serpent-DYN3D code sequence
- \sim Core shielding assessment for the design of FASTEF-MYRRHA
- \sim Neutron shielding studies on an advanced Molten Salt Fast Reactor (MSFR) design

Modeling of SFR cores using the Serpent-DYN3D code sequenceReuven Rachamin, Emil Fridman

Introduction

- \sim DYN3D nodal code
	- \Box Developed at HZDR for LWR application
	- \Box 3D full core steady-state and transient calculations
	- \Box Multi-group diffusion and SP3 solvers
	- \Box Square and hexagonal geometries
	- \Box Is being extended for SFR analysis
- \sim Important tasks
	- \Box Selection of appropriate lattice code
	- \Box Establishment of a few-group XS generation procedure
- П Candidate lattice codes
	- \Box Serpent Monte Carlo transport code
	- \Box HELIOS deterministic lattice transport code

- $\mathcal{C}^{\mathcal{A}}$ To establish few-group XS generation procedure
	- \Box For SFR cores analysis with DYN3D
	- \Box Using Serpent
- $\mathcal{L}_{\mathcal{A}}$ To investigate the performance of Serpent-DYN3D sequence
	- \Box Via 2D full core modeling of SFR core

Reference SFR core

- $\mathcal{L}_{\mathcal{A}}$ "Working horse" MOX ESFR core design
	- \Box Proposed in the frame of the Collaborative Project on European Sodium Fast Reactor (CP ESFR)

Power density = 206 W/cm³

Selection of few-group energy structure

- × 33 group structure is not appropriate
	- \Box Very poor statistics in thermal energy groups
- $\mathcal{L}_{\mathcal{A}}$ 24 group structure is selected
	- Groups 24 to 33 collapsed into a single thermal group \Box

Few-group XS Generation - Super-cell Models

Radial Reflector Model

Results: k-eff

Full Core

Max. rel. diff. = 32 pcm

Ave. STDEV Serpent = 6 pcm

Ave. STDEV k-eff (Serpent) = 6 pcm

Results: Power Distribution at BOC

Control Rods Out

Rel. diff., %Serpent vs. DYN3D

Max. rel. diff. $= 2.1 \%$ Ave. rel. diff. = 0.6 %

Results: Power Distribution at EOC

Control Rods Out

Serpent vs. DYN3D

Max. rel. diff. $= 4.5 \%$ Ave. rel. diff. = 1.4 %

Results: Power Distribution at BOC

Control Rods In

Max. rel. diff. $= 5.2 \%$ Ave. rel. diff. = 1.2 %

Outlook

- $\mathcal{C}^{\mathcal{A}}$ Serpent based few-group XS were used by DYN3D
	- \Box 2D full core nodal diffusion calculations of ESFR core
- \sim DYN3D results were verified against full core Serpent MC solution
- Very good agreement between the codes was obtained
- \sim DYN3D-SFR - required modifications
	- \Box Updating thermal-hydraulic module
	- \Box Development of thermal-mechanical module
- Validation and Verification
	- \Box Benchmarks on EBR and Phoenix experiments

Core shielding assessment for the design of FASTEF-MYRRHA

Anna Ferrari

Work done in the frame of the FP7 European Central Design Team (CDT) Project, which worked to design the **FAst Spectrum Transmutation Experimental Facility** (FASTEF), to support the construction of MYRRHA

Introduction

- \mathbf{r} The MYRRHA research facility (SCK·CEN - Mol, Belgium):
	- \Box lead-bismuth eutectic (LBE) cooled reactor
	- \Box working both in critical and in sub-critical operation modes

- $\mathcal{C}^{\mathcal{A}}$ One of the many challenges of the MYRRHA design is:
	- \Box shielding of the accelerator tunnel and the reactor building

Shielding and activation analysis

Objectives & Methodology

\sim **Main goal:**

 \Box To develop a reliable methodology based on Monte Carlo method for the assessment of the main shielding and activation

\sim **Analysis methodology:**

- \Box **MCNPX** CDT models of the MYRRHA critical and subcritical core
	- ➤ characterize the neutron radiation fields on suitable surfaces around the core barrel
	- ➤ build a complex source terms as an input for the FLUKA simulations
- \Box **FLUKA** simulations
	- ➤ detailed model for shielding and activation analysis
	- ⋗ using the MCNPX evaluated spectra as a source terms

Shielding and activation analysis

The FLUKA detailed model

$\mathcal{C}^{\mathcal{A}}$ **Lateral shielding analysis:**

- \Box FLUKA detailed model from the core barrel to the shielding walls and the reactor cover
- \Box conservative source term: critical operation mode

\sim **Vertical shielding analysis:**

- \Box FLUKA detailed model from the core barrel to the reactor cover and the final wall beyond the last magnet of the proton beam line
- \Box conservative source term: sub-critical operation mode

Results: Ambient dose equivalent rate

 $\mathcal{L}_{\mathrm{max}}$ The results demonstrated a sufficient lateral radiation containment

Outlook

- $\mathcal{C}^{\mathcal{A}}$ A methodology based on combined use of two MC codes (MCNPX and FLUKA) has been developed
	- \Box ^a powerful tools for shielding optimization of the MYRRHA facility
- \sim The developed methodology can address the following key points:
	- \Box optimization of the cover design of the reactor vessel
	- \Box optimization of the upper vertical part of the reactor building
	- \Box choice of structural materials close to the spallation target

Neutron shielding studies on an advanced Molten Salt Fast Reactor (MSFR) designBruno Merk, Jörg Konheiser

IAEA TM, June 12-14, 2013

Introduction

- $\overline{}$ Advantages of MSFR:
	- \Box online reprocessing and refueling
	- \Box no solid fuel production
	- \Box always negative feedback
	- □ draining of the fuel
- \sim Material damage in the MSFR is significantly high
	- \Box high neutron flux level in the core
		- \blacktriangleright high share of neutrons above 1MeV
	- \Box fast neutron are born directly at the core vessel walls
- П The neutron fluence in the core and outer vessels should be evaluated

Advanced MSFR model

 $\mathcal{L}_{\mathcal{A}}$ Modeling of a 2D advanced MSFR using the HELIOS unstructured mesh neutron transport code

- **1. Core region: mixed fuel-fertile salt**
- **2. Blanket region: pure fertile salt**
- **3. 20 mm-thick core vessel**
- **4. 30 mm-thick outer vessel (safety related vessel)**
- **5. ²⁰ cm-thick graphite reflector poisoned with 5% natural boron**

3000 MWth reactor based on the Thorium fuel cycle

Neutron flux distribution

In the core and blanket regions

Epithermal neutron flux (< 0.1 MeV)

·sec n/cm 2 $1.714E+11$

 $4.662E+15$

Fast neutron flux (> 0.1 MeV)

\sim **Fast neutron flux:**

 \Box strongly bound to the core vessel

$\mathcal{L}_{\mathcal{A}}$ **Epithermal neutron flux:**

 \Box small change at the boundary between the core and blanket

Neutron flux distribution

In the core vessel walls

- \sim Very high neutron flux
	- \Box leads to a very short time to reach the fluence limit value for materials under irradiation (10²⁰ n/cm²)
- $\mathcal{L}_{\mathcal{A}}$ A failure of the core vessel has to be taken into account

Shielding optimization of the outer vessel

- $\mathcal{L}_{\mathcal{A}}$ The outer vessel has to fulfill a safety function
- \sim **Optimization strategy:** stepwise increasing of the blanket region

Optimized geometry

Outlook

- \sim A 2D advanced MSFR model was analyzed
	- \Box Using the HELIOS deterministic lattice transport code
- **COL** High neutron flux was demonstrated in the core vessel walls
	- \Box The core vessel cannot carry any safety related function
- The outer vessel has to fulfill the safety function
- \sim The outer vessel can be shielded by a well blanketed system
	- \Box keep the fluence within the limit of 10^{20} neutrons/cm² for a reasonable operation of 80 years.

IAEA TM, June 12-14, 2013

Member of the Helmholtz Association Reuven Rachamin I Institute of Resource Ecology I www.hzdr.de