ACHIEVING HIGH BURNUP TARGETS WITH MOX FUELS: TECHNO ECONOMIC IMPLICATIONS

- S. Clement Ravi Chandar*, D.N. Sivayya,
- P. Puthiyavinayagam and P. Chellapandi

Indira Gandhi Centre for Atomic Research, Kalpakkam- 603 102, Tamil Nadu, India

SCOPE

- Indian FBR Program- Fuel & material development and irradiation experience
- High burnup issues
- Reference Design considered in the high burnup- FBR1
- Effect of high burnup on various design parameters & economy
- Summary
- R & D requirements for meeting high burnup targets

Indian FBR Program- Fuel & material development and irradiation experience

India's FBR Program: Fuels

				Target/ Achieved
			LHR,	Burnup,
Reactor	Mwe	Fuel	W/ cm	GWd/ t
FBTR	13	UC- 70 % PuC	400	165
				112 (Test
PFBR	500	UO ₂ - 28 % PuO ₂ (Max)	450	irradiation)
Future		OO_2^{-2} 20 % PuO_2 (IVIAX)		
FBRs	500		450	100
Metal fuel test				
irradiation		U-xPu- 6% (Max) Zr	450	150
MFBR	1000	(or) U-xPu with a liner	500	200

India's FBR Program- MATERIAL DEVELOPMENT

Parameter	Stage- 1	Stage- 2	Stage- 3	Stage-4
Year	2010	2012	2016	2020
Target Burnup, GWd/t	125	150	200	200
Core	Oxide	Oxide	Oxide	Metal
Clad & Wrapper	20 % CW D9	ODS alloy for	ODS alloy for	T91 alloy for
Material	& D9I	clad & Ferritic steel for	clad & Ferritic steel for	clad & Ferritic steel
		wrapper	wrapper	for wrapper
Linear Power, W/ cm	450	450	500	> 500
R&D	Extension of ongoing R&D	New R & D	R & D for safety	R & D for safety

Status of irradiation

- FBTR Mixed carbide has achieved 165 GWd/ t burnup
- A fuel pin failure is noticed recently at a burnup of 148 GWd/t
- PFBR 37- pin test SA containing 29% PuO₂ has been discharged at 112 GWd/ t burnup

HIGH BURN UP ISSUES

Advantages

- Better economy
- Lesser fuel SA to fabricate
- Lesser load on Reprocessing & waste management

Design and fuel performance

- Pin & Core design requirements
- Influence of various parameters like melting point, thermal conductivity of fuel, gas release, etc., on fuel performance

Material development to meet the target burnup

- Adequacy of present material upto 150 GWd/t burnup
- Materials required for higher burnup

Requirement from spent fuel

- Specific Activity
- Decay heat

Economy

Fuel cycle cost & unit energy cost

Indian FBR Program- Fuel & material development and irradiation experience

Reference Design Considered-FBR1

Pin rating	_	450 W/ cm
Target Burnup		150 GWd/ t (112 dpa)
Structural		Less swelling material upto
material for clad		150 GWd/ t burnup is
& wrapper		considered
Pin Dia	-	6.6/ 5.7 mm
Core Length		1000 mm
Wrapper		131.3 mm / 3.2 mm thick
Inlet	_	397 °C (670 K)
temperature		

Reference core & fuel SA

Effect of high burnup on various design parameters & economy

Pin Design

Clad Failure based on cumulative damage fraction ~ 0.25 for normal operation

Considers clad internal corrosion by FCCI and external corrosion by sodium

- •Internal corrosion is 114 μm for 150 GWd/ t burnup
- •External corrosion is 5 μm per annum

CDF= 0.19 by analysis at 150 GWd/ t

 Fuel pin dimensions like thickness, plenum volume, etc., can be modified for burnup > 150 GWd/t for D9 class of materials.

Core Design Requirements for meeting High burnup

- Core excess reactivity reduces due to increase in burnup Compensation by adding 8 more Fuel SA (150 GWd/t) and 16 more Fuel SA (200 GWd/t) or increase in enrichment by 0.75%
- Absorber Rod worth reduces Shut Down Margin changes
- Implications Boron enrichment of both CSR and DSR have to be increased to obtain
 - (i) SDM of 5000 pcm when all AR are available
 - (ii) SDM of 1 \$ during accidental situations

	Enrichment		
BU	CSR	DSR	
100	65%	65%	
150	65%	70%	
200	90%	70%	

Fuel performance

- Melting Point
- Thermal conductivity of fuel
- O/ M
 - Analysis shows that O/M is equal to 2 at 150 GWd/t burnup throughout the fuel radius. O/ M ratio influences fuel thermal conductivity, melting point and Fuel- Clad Chemical Interaction (FCCI)
- Fission gas release (~80 % at 150 GWd/t burnup)

Courtesy: Carbajo

PENALTY ON THE FUEL PERFORMANCE DUE TO HIGH BURNUP

At 150 GWd/t burnup

- Melting point of the fuel is less by 3 % than fresh fuel
- thermal conductivity of the fuel is 22 % less than fresh fuel
- TCL 2362 °C
- Hotspot >> T melt
- JOG presence > 70 GWd/t to be studied
- Hotspot factors to be reviewed after reactor operation
- Resulting swelling in the fuel due to retained FP are to be assessed for higher burnup.

Joint Oxyde Gaine (JOG)

- JOG is Cs₂MoO₄
- Low Density- 4.36 g/ cc
- T_{melt} JOG= 942 K
- Formed between fuelclad gap at
 - BU > 7at%
 - T _{clad} < 600 \circ C
 - O/M > 1.985 (at surface)
 - T _{clad} > 1100 ° C migrates to cooler regions

Courtesy: Tetuys Ishii & Tomoyasu Mizuno

JOG WIDTH VS BURNUP

CONCERNS FROM REPROCESSING

Specific Activity

 Increase in specific activity is about 19% and 33% for 150 and 200 GWd/t burnup in comparison with 100 GWd/t

Decay Power

Increase in decay power is 21% and 37% for burnup levels of 150 and 200
GWd/t

BURNUP VS FUEL CYCLE COST

- Reduced annual fuel requirements-reduces variable cost in fuel fabrication
- Idling of created capacity- increases fuel processing cost in reprocessing and fabrication
- Increased fuel handling interval- lesser annual downtime resulting in higher plant load factor which means increased electricity export

- If variation in PLF is considered, then at 200 GWd/t, FCC is cheaper by 17%.
- If one considers the same plant caters to the needs of 3 Fast Reactors with slight increase in the investments then FCC works out to be highly attractive and is cheaper by about 57%.
- FCC seems to be bottoming out at 150 GWd/ t burnup for constant load factor
- FCC appears to be saturating at10- 200 GWd/ t burnup for variable load factor
- Optimum burnup in the range of 150- 200 GWd/ t for MOX fuels

Clad & Wrapper Deformation by analysis in PFBR test SA

- Existing D9 material is expected to serve its objective for 150 GWd/t burnup
- For burnup beyond150 GWd/t, D9I material is likely to be infused
- For future metallic core, ferritic steels are considered

Summary

For a typical MOX fuelled SFR of power reactor size, Implications due to higher burnup have been quantified

Advantages

Improvement in the economy is seen upto 200 GWd/t

Dis- Advantages

- Design changes > 150 GWd/ t bu
- Need for 8/ 16 more fuel SA at 150/ 200 GWd/ t bu
- Higher enrichment of B₄C in CSR/ DSR at higher bu
- Reduction in LHR may be required at higher bu
- Structural material changes beyond 150 GWd/ t bu
- Reprocessing point of view- Sp Activity & Decay heat increase

Need for R & D is a must before increasing burnup

bu- refers burnup

Summary (Contd..)

- Efforts to increase MOX fuel burnup beyond 200 GWd/ t may not be highly lucrative
- MOX fuelled FBR would be restricted to two or four further reactors
- Imported MOX fuelled FBRs may be considered
- India look towards launching metal fuel FBRs in the future.
 - Due to high Breeding Ratio
 - High burnup capability

R & D REQUIREMENTS

Essential:

- Data measurement with great accuracy on fuel & structural materials
- JOG formation and its behaviour under various conditions besides its property
- FCCI for different types of steel

Desirable:

- Formation of any low melting phases in the fuel at high burnup
- Fission gas release and retained measurement in the irradiated fuel

Thank You