
2013 International Nuclear Atlantic Conference - INAC 2013

 Recife, PE, Brazil, November 24-29, 2013
ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN
ISBN: 978-85-99141-05-2

CLUSTER IMPLEMENTATION FOR PARALLEL COMPUTATION WITHIN

MATLAB SOFTWARE ENVIRONMENT

Antonio O. de Santana
1
, Carlos C. Dantas

2
, Luiz G. da R. Charamba

3
, Wilson F.de

Souza Neto
4
, Silvio B. Melo

5
, Emerson A. de O. Lima

6

1,2
Departamento de Energia Nuclear – CTG - Universidade Federal de Pernambuco

Av. Prof. Luiz Freire, 1000 – CDU

50740-540 – Recife - PE

mailto:aos@ufpe.br

ccd@ufpe.br

3,4,5Centro de Informática – CJN - Universidade Federal de Pernambuco

Av. jornalista Anibal Fernandes, S/N –Cidade Universitária

50740-560 – Recife - PE

sbm@cin.ufpe.br

6Departamento de Matemática – Universidade de Pernambuco

Rua Benfica, 455 - Madalena

50720-001 – Recife – PE

emathematics@gmail.com

ABSTRACT

A cluster for parallel computation with MATLAB software the COCGT – Cluster for Optimizing Computing in

Gamma ray Transmission methods, is implemented. The implementation correspond to creation of a local net of

computers, facilities and configurations of software, as well as the accomplishment of cluster tests for determine

and optimizing of performance in the data processing.. The COCGT implementation was required by data

computation from gamma transmission measurements applied to fluid dynamic and tomography reconstruction

in a FCC-Fluid Catalytic Cracking cold pilot unity, and simulation data as well. As an initial test the

determination of SVD – Singular Values Decomposition - of random matrix with dimension (n , n), n=1000,

using the Girco’s law modified, revealed that COCGT was faster in comparison to the literature [1] cluster,

which is similar and operates at the same conditions. Solution of a system of linear equations provided a new test

for the COCGT performance by processing a square matrix with n=10000, computing time was 27 s and for

square matrix with n=12000, computation time was 45 s. For determination of the cluster behavior in relation to

“parfor” (parallel for-loop) and “spmd” (single program multiple data), two codes were used containing those

two commands and the same problem: determination of SVD of a square matrix with n= 1000. The execution of

codes by means of COCGT proved: 1) for the code with “parfor”, the performance improved with the labs

number from 1 to 8 labs; 2) for the code “spmd”, just 1 lab (core) was enough to process and give results in less

than 1 s. In similar situation, with the difference that now the SVD will be determined from square matrix with

n= 1500, for code with "parfor", and n=7000, for code with "spmd". That results take to conclusions: 1) for the

code with “parfor”, the behavior was the same already described above; 2) for code with “spmd”, the same

besides having produced a larger performance, it supports a larger work load

1. INTRODUCTION

Large and complex software generating great amount of data are typical of activities, such as:

artificial intelligence, molecular physics, meteorological forecast, researches of DNA,

exploration of petroleum, etc. Such activities demand the use of machines of multiple

processors and of super-computers supplied by great companies. These solutions offer a great

performance, but they have a high cost and low scalability. Before the presented difficulties,

Donald Becker and Thomas Sterling, working in the NASA (1994), developed a prototype of

a system composed of several interlinked PC as a local net. That experience, "cluster" call,

produced excellent results, being obtained high processing levels, equivalent to the super-

computers of the time, besides a bass cost in relation to those super-computers. A cluster can

be defined as being a group of machines (nodes), usually without the need of peripheral,

interlinked through a net; this machines work together, changing information amongst them to

solve a certain task. Due to the high performance and low cost, the cluster of personal

computers is quite used by the scientific communities, which have typical tasks that demand

high processing power. In this context, the function of the cluster can be summarized as:

given a complex problem and identified as being parallel, a server (master) should be

responsible for the division of this problem in several pieces to be processed parallel in

“nodes” slave (machines dedicated to the process). The solution found by each "node" is sent

for the server such that the complete solution of the problem can be remounted.

On the other hand, a limit of clock frequency around of 4 GHz for the current processors was

appraised for the next years. This limit is due to the super-heating of the processors, having

the need of a special and appropriate cooling. However, until the moment, didn't appear a

project totally viable and that can be marketed. While this, now a strong tendency exists

among the manufacturers of processors of increasing the number of cores (nuclei) for

processor. However, the addition of cores doesn't mean increase in computing power.

However, the improvements in performance, offered by the new hardware multi-cores, allow

the obtaining of more potent clusters, generating a quite favorable environment for the

parallel computation [1].

The objective of the present work is the implementation of a cluster for parallel computation

in MATLAB environment. That implementation was required by data computation from

gamma transmission measurements applied to fluid dynamic and tomography reconstruction

in a FCC - Fluid Catalytic Cracking - cold pilot unity, and simulation data as well [2]. This

implicates in the accomplishment of facilities and configurations (software and hardware), as

well as the accomplishment of tests to determine and to improve the performance of the

cluster in data processing.

2. METODOLOGY

2.1. Brief Description of Parallel Computation in MATLAB Environment

In general, a local net of computers PC (nodes calls) in a defined lay-out initially should be

created. Then, software and services are distributed, installed and configured in agreement

with the architecture of the system (hardware and software). The diagram of blocks contained

in the Figure 2.1 gives a general vision of the parallel computation in MATLAB environment.

The tasks and jobs are created by the client that sends them to the server, which through his

scheduler (or “Job Manager”), manages the execution of the jobs in agreement with the

procedure: 1) the tasks are sent for her execution in the workers; 2) the reception of the results

of the workers is accomplished; 3) the results are sent to the client.

 Figure 2.1 - Basic configuration of the parallel computation with MATLAB

2.2. Speedup and Efficiency

2.2.1. Speedup

"Speedup" corresponds to the metric for evaluation of performance of a system of parallel

computation. With base in values of speedup, the number of machines to be used in the

cluster is determined. Two modalities exist to define the "speedup" specifically: "absolute

speedup" and "relative speedup". The "absolute speedup" is defined as the total time elapsed

in the execution of the sequential algorithm with only 1 processor, divided by the total time

elapsed in the execution of the parallel algorithm with "P" processors. This relationship is

valid when both architectures (sequential and parallel) possess the same problem size. On the

other hand, the relative speedup is defined as the relationship among the time of execution of

MATLAB Client

Parallel Computing

Toolbox

Scheduler

or

Job Manager

MATLAB Worker

MATLAB Distributed

Computing Server

MATLAB Worker

MATLAB Distributed

Computing Server

MATLAB Worker

MATLAB Distributed

Computing Server

a parallel algorithm, with 1 (one) processor, and the time of execution due to the same

algorithm, with "P" processors. The reason to use relative speedup is that the performance of

parallel algorithms varies with the number of available processors in a cluster. Then, being

compared the same algorithm with several numbers of processors, it is possible to verify with

more precision the degradation of parallelism use; this doesn't happen being used the absolute

speedup. The equation for the relative speedup is expressed as:

 � =
�(�)

�(�)
 (1)

where S is the speedup, T (1) is the time spend in the execution of the parallel algorithm with

a single processor and T (P) is the time spend in the execution of the same algorithm with "P"

processors. In systems parallel ideals, the "speedup" is equal to the number of processors

("P"). Already in practice, his value is smaller than "P".

2.2.2. Efficiency

The efficiency is another measure that can be used in the study of parallel architectures, being

derived from the speedup definition. The efficiency tells the problem size and the processors

number requested to maintain the efficient system. A direct relationship exists among

processors number, problem size and the efficiency. Therefore, if the problem size goes

constant, increasing the processors number, the efficiency will be decreased because of the

overhead increase caused by the number of processors. Already if the problem size be

increased, staying constant the processors number, the efficiency will be increased (in

scalable parallel systems) due to the low overhead that is insignificant in relationship to

computation of the problem. On the other hand, if both the problem size and processors

number be increased, the efficiency will be constant. This way, it can stay a good efficiency

(or Speedup), increasing the number of processors proportionally to the size of the problem. It

is very difficult to find the exact limit of this proportionality for each architecture since the

problem can be associated to countless aspects of hardware and software. The efficiency is

determined in agreement with the following equation:

 E=S / P (2)

where "S" is the speedup and "P", the number of processors. Therefore, the number of

processors should be chosen from way to maximize the efficiency and the speedup of the

architecture. In systems parallel ideals, the efficiency is equal to 1 (one). In practice, the

efficiency varies between 0 (zero) and 1 (one).

2.3. Flops and Benchmarks

2.3.1. Flops

FLOPS (or flops) is a computation acronym that means FLoating point OPerations per

Second. FLOPS can be defined as being an unit of measure used to evaluate the processing

capacity and, therefore, the performance of a computer. This acronym is used in several fields

of the science and engineering, where large use of calculations with flotation point is made,

similar to the old expression "instructions per second”. Since the computation devices have

enormous processing capacity, it is recommended to use larger units than FLOPS, this is, their

multiples. The multiples more used are: megaflops (MFLOPS), gigaflops (GFLOPS),

teraflops (TFLOPS), petaflops (PFLOPS) and exaflops (EFLOPS) [3].

2.3.2. Benchmarks

The FLOPS is used as measure unit of flotation point if a benchmark is present in all

computer of interest. A benchmark is a program that accomplishes tests in a certain machine

with the objective of to measure or to foresee her performance and to emphasize the strong

and weak points of her architecture. Benchmarks can be classified in agreement with the

application class for which they are prepared as, for instance, scientific computation, net

services, applications multimedia, processing of signs, etc. Among the benchmarks, Linpack

is one of the more used by the scientific community. Her current version - HPL (High

Performance Linpack) - it contains two groups of routines: one for decomposition of matrix

and other to solve the system of resulting linear equations of the decomposition. Her

application is mainly in machines that use software for calculations scientific and of

engineering, because the operations more used in these types of applications are in point-

flotation [4].

2.4. Experimental Procedure

2.4.1. Computer type

Two computers were used for the formation of the cluster (server e worker) and more one

computer designated to be the client. Both computers possess the same hardware

configuration, which is described below as:

CPU: Intel Colors i7 860, 2.8 GHz, 8 MB, LGA 1156

Plate Mother: Intel DP55WG

Memory (4 GB): 2x (DDR3, 2GB, 1333 MHz, KINGSTON, KVR 1333, D3N9/2GB)

Plate of Video: 1 GB, GF9400GT, PCI EXP, NVIDIA

Hard Disk (HD): 1000 GB, SATAN, 32 MB, 5400 RPM

Plate of Net: 10/100/1000 MB / s

2.4.2. Installation and configuration of the cluster (COCGT)

The computers, with the architecture described above, were installed and configured in

agreement with the manuals of installation and configuration (version 4.3) supplied by

MathWorks. These manuals are distributed in 4 (four) volumes (or apprenticeships), whose

titles are:

Stage 1/4: Installing MATLAB Distributed Computing Server. 4.3 on to Windows Operating

 System Cluster

Stage 2/4: Configuring MATLAB Distributed Computing Server. 4.3 go Uses with Job Mana-

 ger on Windows Operating Systems

Stage 3/4: Installing Parallel Computing Toolbox. 4.3 on Windows Operating Systems

Stage 4/4: Testing Your Installation of MATLAB Distributed Computing Server-4.3 with Job

 Manager

Initially, a local net was created being formed by three nodes (computers), two of them being

designated as server and "worker", while the other "node" was designated as client (Figure

2.2). This way, the Cluster for Optimizing Computing in Gamma ray Transmission methods -

- COCGT was created. Soon after, the installations and configurations of software and services

were distributed agreement with the figure 2.2. The software MATLAB Distributed Computing Server

(MDCS) was installed and configured in nodes Server and Worker, while the software Parallel

Computing Toolbox (PCT) was installed and configured in the Client node. As for the Job Manager,

the same is contained in the software MDCS, being activated during the installation and configuration

of MDCS in COCGT. Those are the software more important of the COCGT system.

 Figure 2.2 – Block diagram of the COCGT

 Cluster

Client’s node

 PCT

Main node(Server):

• MDCS

• Manager

 of license

• mdce Service

• Job Manager

Worker’s node

• MDCS

• mdce Service

2.4.3. Testes with the cluster

i) Test 1: Determination of singular values with application Girko’s law

The Girko’s law establishes that the eigenvalues of a random matrix N for N, whose elements

are obtained of a normal distribution, tend to lie inside a circle of radius sqrt(N) for N large

‘values. This law can be represented by the following MATLAB code [1]:

 N = 1000

 Plot (eig (randn (N)) / sqrt (N), '.');

The execution of the code above generates the Figure 2.3 below. Each point represents 1 (one)

eigenvalue. It is observed that most of the eigenvalues lives inside in a circle of ray equal to 1

(one) and are centered in the origin of the axes, an indication that, for the Girco’s law, the

value of a eigenvalue doesn't exceed the square root of the size of the matrix. The Girko’s law

can be modified to be applied in the determination of singular values [1]. For the application

of this law in the determination of SVD (Singular Values Decomposition), through

MATLAB, the values of “max (svd (randn (N)))” relative to the arbitrary values of the

variable "N" are fixed. The application of the modified Girko’s law reduces the time of

computation, allowing the numeric estimate of the singular values for any normal and random

matrix [1].

Figure 2.3. Eigenvalues of random and square matrix of size 1000, normalized for

 1/sqrt (1000); the elements of the matrix are drawn from normal distribution

The parallel code of the Figure 2.4 generates a random matrix starting from normal

distribution and her SVD is determined, besides registering the time elapsed in the loop

execution. The “parfor-loop” of the code below has as basic concept the same of "for-loop”

(MATLAB pattern). The difference among them is in the procedure, for which the body of

the loop (loop declarations) is executed. With the "parfor-loop", the execution is

accomplished in parallel and with "for-loop", the execution is made in the sequential way

[5],[6].

y = zeros (1000, 1);

tic

parfor n=1:1000

 y (n) = max (svd (radn (n)));

end

toc

plot (y)

 Figure 2.4.- Parallel code in MATLAB for SVD determination

 of normal and random matrix

This same parallel code (Figure 2.4) was used by the literature [1] for determination of the

parameters of performance: Execution Time, Speedup and Efficiency in function of the labs

number. The data of the mentioned literature were obtained in a system similar to our cluster

(COCGT). Therefore, for the comparison of results, the parameters above also were

determined in function of the labs number. In the COCGT, the operation conditions of 1, 2, 3

and 4 labs were used. The labs were fixed by the parallel command "MATLAB pool". The

determination of the times of execution, for each situation (for each lab number), made

possible the determination of the values of “speedup” (relative) and of the “efficiency”.

ii) Test 2: Evaluation of the cluster with the application of the benchmark Linpack HPL

The objective of that test was the performance evaluation of the COCGT through of the

benchmark "HPCCLINPACK", an implementation for MATLAB of the benchmark “Global

HPCC HPL”, which is own Linpack in her version HPL (High Performance Linpack). That

benchmark proposes the resolution of a system of linear equations obtained of a real matrix

"A" of size (n , n) and of a column vector "B" with size “n”, both obtained random way.

Therefore, the time spend in the resolution of the equation A*X = B, whose solution is given

by X = (A
-1
) * B, is measured. That time corresponds to the metric of performance of the used

system. The program HPCCLINPACK contained in MATLAB and used to solve this problem

is presented in Figure 2.5.

m=input('which is the size of the matrix?');% "m" is the dimension of a

square and random matrix
matlabpool open local 4; % Fixe the labs number
spmd
% Create a distributed matrix in the 2d block cyclic distribution and a

distributed column vector 1d
A=codistributed.randn(m,m,codistributor2dbc);
b=codistributed.rand(m,1);
% Time of solution of the linear system
tic;
x=A\b;
t=toc;
%Need to convert to a 1d distribution for the cheking cod below
A=redistribute(A, codistributor1d);

% Compute scaled residuals
r1=norm(A*x-b,Inf)/(eps*norm(A,1)*m);
r2=norm(A*x-b,Inf)/(eps*norm(A,1)*norm(x,1));
r3=norm(A*x-b,Inf)/(eps*norm(A,Inf)*norm(x,Inf)*m);
if max([r1,r2,r3])>16
 error('Failed the HPC HPL benchmark');
end
end
% Performance in GFLOPS;
TamDados=8*m^2/(1024^3)
perf=((2/3)*m^3+(3/2)*m^2)/max([t{:}])/1.e9
tmax=max([t{:}])
matlabpool close

Figure 2.5. Code of the benchmark HPCCLINPACK used in present work.

In that tests, squares matrix and columns vectors with dimensions equal to 10000 and 12000

were used. Through the measures of processing time, speedup and efficiency, in relation to

the labs (cores) number and the matrix dimensions above were fixed.

iii) Test 3: Behavior of the COCGT in relation to the use of "parfor-loop" and "spmd"

The objective of that test was the verification of the COCGT behavior in relation to the use of

"parfor-loop" and "spmd" in different codes, but with the same “problem” (calculations) and

same “problem size” (amount of calculations) Here, it is opportune a definition of "spmd”

(Single Program Multiple Dates)": It is an environment of MATLAB parallel programming

that allows the creation of a code block (spmd-end) that is executed in all of the available labs

(workers) in the cluster. For the test, the following codes were used (Figure 2.6):

Code a: Code b:

matlabpool nlab matlabpool nlab

Y=zeros (1000,1); D=distributed.randn (1000);

tic tic

parfor n=1:1000 spmd

 Y (n) = max (svd (randn (n))); m1=max (svd (D));

end end

toc toc

SVmax=max (Y) SVmax=m1

matlabpool close matlabpool close

Figure 2.6. Codes used in verification of the COCGT behavior in relation to the use of

 "parfor" and "spmd

The two codes above have different structures: The “code a” of the Figure 2.6 is a loop that

uses the command "parfor", while the “code b” uses the "spmd block” (spmd -.end). The

“problem” and “problem size” are the same for both codes, being that the “problem” is the

calculation of the "maximum singular value" and “problem size” correspond to the dimension

(n, n) of the random matrix, being in this case n=1000. The calculated value of “maximum

singular value” should be the same in the two codes. The metric used for the evaluation of the

performance was the time consumed in the execution of each code. Two batteries of tests

were accomplished: one with variation of 1 up to 4 labs for the “code b" and the other with

variation of 1 up to 8 labs for the “code a", fastened through the MATLAB command

"matlabpool."

iv) Test 4: The cluster behavior in relation to use of "parfor" and "spmd" in the

 determination of SVD on Square Matrix of Dimension above 1000

This section of tests had the objective of verifying the behavior of the COCGT in the

determination of SVD with "parfor" and "spmd" in square and random matrix with

dimensions above 1000 The codes of the Figure 2.7 – “code c” and “code d” – are the same

used in test previous (Test 3), but now with matrix of dimensions equal to 1500 and 7000,

where the "maximum singular value" will be evaluated with "parfor and “spmd” respectively.

Code c: Code d:

matlabpool nlab matlabpool nlab

Y=zeros (1500,1); D=distributed.randn (7000);

tic tic

parfor n=1:1500 spmd

 Y (n) = max (svd (randn (n))); m1=max (svd (D));

end end

toc toc

SVmax=max (Y) SVmax=m1

matlabpool close matlabpool close

Figure 2.7. Codes used in the verification of the COCGT behavior in relation to the use

 of "parfor" and "spmd" on Square Matrix of Dimensions 1500 and 7000

3. RESULTS AND DISCUSSION

3.1. Results Obtained with the Test 1

The results obtained with the accomplishment of the Test 1 (item 2.4.3 - i), which was an

application of the modified Girko’s law to determine SVD of matrix, are in the Tables 3.1 and

3.2. A comparison among these tables reveals that the times of execution of the parallel code

(Figure 2.4), contained in the Table 3.1, are larger in relation to the times than are contained

in the Table 3.2. This means that our system was, for all of the labs numbers, faster than the

system of the literature [1]. It can be that this difference is due to the difference among the

architectures of computers involved in the tests. Our processor model has 4 (four) cores and

the following specification:

Intel Cores i7 860 - 2,8 GHz. CACHE 8 MB. LGA 1156.

This model has two technologies of data processing. One of them is the technology “Turbo

Boost" that is activated when the Operating System (OS) request the highest state of

performance of the processor. Therefore her clock frequency is increased. The other

 Table 3.1 – Determination of the performance of a parallel code in function

 of the amount of labs of the cluster – literature data [1]

N
o
 Labs

(cores)

Processing Time

(seconds)

Relative

Speedup

Efficiency

(%)

1 870.1 1.00 100

2 487.0 1.79 89

3 346.2 2.51 83

4 273.9 3.17 79

Table 3.2 – Determination of the performance of a parallel code in

 function of the amount of labs of the COCGT

N
o
 Labs

(cores)

Processing Time

(seconds)

Relative

Speedup

Efficiency

(%)

1 166.5±0,2 1.00 100

2 99.0±0,2 1.68 83

3 88.2±0,4 1.89 63

4 84.4±0,2 1.97 49

is denominated of multiple-segmentation or processing of multiple-tasks, presenting, a

parallel architecture. This allows each nucleus of the processor to work with two tasks at the

same time, what reduces the time of processing of the algorithm. In relation to the model of

the literature, it was only informed that was a processor of 4 cores.

3.2. Results Obtained with the Test 2

The results obtained with the code used in the Test 2 (Figure 2.5) are contained in the Table

3.3 below. The analysis of this table reveals that: 1) it happens mistake for lack of memory

when 1 or 2 labs are used in the processing of square and random matrix of dimensions

corresponding to 10000 and 12000; 2) in the processing of the matrix with dimension equal to

10000, when it is used 3 and 4 labs, the times expenses are about 28 and 27 seconds,

respectively; 3) in relation to processing of the matrix with dimension equal to 12000, being

used the same amount of labs (3 and 4 labs), the times expenses are about 48 and 45 seconds,

respectively. The times here obtained are small in if treating of resolution of linear equations

systems starting from matrix with size relatively large. This denotes a good performance of

the COCGT. The metric FLOPS, another important metric that evaluates the cluster

performance, generated values in the interval from 24 to 26 GFLOPS in relation to the

previously mentioned matrix.

Table 3.3 – Performance of the COCGT in the resolution of systems of linear equations

 obtained of square and random matrix of dimensions 10.000 and 12.000

Matrix

Dimension

N
o
 Labs

(cores)

Processing Time

(seconds)

Performance

(GFLOPS)

Data Size

(GB)

10000

01
*

02
*

03

04

-

-

27.82±0.05

26.89±0.18

-

-

24.47±0.21

25.60±0.70

0.7451

12000

01
*

02
*

03

04

-

-

47.60±0,37

44.97±1,53

-

-

23.97±0,04

24.80±0,17

1.0729

 (*) . It was not possible to obtain the data for lack of memory in the computation of the problem

 with 1 and 2 labs (cores)

3.3 - Results Obtained with the Test 3

The behavior specifically depends on the computer/processor type, environment of parallel

programming and algorithm type. In our case (COCGT), different behavior happened in

relation to the times of processing among the two parallel codes presented in the Figure 2.6

(item 2.4.3-iii), both possessing the same problem with same size. In this case, the “same

problem” is the determination of SVD of a square and random matrix, while the “same

problem size” is the dimension of the matrix (n, n), that in the current case it is n=1000. For

the code "parfor" (Figure 2.6 – code a), the time of processing decreased with the increment

of labs number from 1 to 8 labs (Table 3.4). This means that the performance increased with

the labs number; the time of processing declined of 169,55 seconds (obtained with 1 lab) for

43,20 seconds (obtained with 8 labs). For the code with "spmd” (Figure 2.6 - code b), in

agreement with the Table 3.5, were generated very small and close times of processing (< 1 s)

with the use from 1 to 4 labs This means that the work load (problem size) for that code was

very small; only 1 (one) lab was enough to process the code in less than 1 (one) second. Since

the same hardware architecture (same cluster), the same programming environment

(MATLAB), the same problem with same size were maintained, this difference is due to the

two types of employed codes. It is very probable that the "code a" of the Figure 2.6 (with

"parfor") is in a great relationship: "number of processors/work load”. While the code "b" of

the Figure 2.6 (with "spmd" block), needs an increase of size of the problem (increase of the

work load) to reach a relationship "number of processors/work load” in way to produce a

good performance. However, the executions of the two codes above produced the same result

for the "maximum singular value" (about 63) of a matrix random of dimension n=1000

(Tables 3.4 and 3.5).

Table 3.4 - Behavior of the COCGT regarding the command "parfor" in the

 determination of SVD of a square and random matrix of dimension 1000.

Nº Labs

(cores)

Processing Time

(second)

Relative

Speedup

Efficiency

(%)

Maximum

Singular Value

01 169.5529 1 100 63.2856

02 100.0698 1.69 84 63.2747

03 88.9894 1.91 64 63.4354

06 49.1429 3.45 57 63.2365

07 46.3321 3.66 52 63.3045

08 43.2354 3.92 49 63.1232

Table 3.5 – Behavior of the COCGT regarding the block of code "spmd -end" in the

 determination of SVD in a square and random matrix of dimension 1000

Nº Labs

(cores)

Processing Time

(second)

Relative

Speedup

Efficiency

(%)

Maximum

Singular Value

01 0.9324 1 100 63.0787

02 0.7798 1.19 59 63.2471

03 0.7609 1.22 41 63.0142

04 0.8199 1.13 28 63.1278

3.4 - Results Obtained with the Test 4

The results regarding the Test 4 are in the Tables 3.6 and 3.7. The analysis of the data reveals

that the determination of SVD of a square matrix of dimension n=1500, using the code with

"parfor", was slower than the determination of SVD of a square matrix with n=7000, using the

code with "spmd". The processing times generated were 883 - 524 s, for code with “parfor”

and 237-144 s, for code with “spmd”´. The intervals of time here mentioned were obtained

with the labs numbers varying of of 1 to 4 labs. Now, both codes above possess the same

behavior: The times of processing decreased with the labs number varying of 1 up to 4.

However; the code with “spmd” besides having larger performance (smaller times of

processing), supports a larger work load (matrix size) in relation to the code with "parfor".

 Table 3.6 – Behavior of the COCGT in relation to the Application of "parfor" in the

 determination of SVD in a matrix of Dimensions 1.500 for 1.500

Nº Labs

(cores)

Processing Time

(second)

Relative

Speedup

Efficiency

(%)

Maximum

Singular Value

01 883.2376 1 100 77.8250

02 592.3603 1.49 75 77.5470

03 542.3689 1.63 54 77.5533

04 524.5181 1.68 42 77.6263

Table 3.7 – Behavior of the COCGT in relation to the application of the "spmd" block

 for the determination of SVD in matrix of dimension equal to 7000

 Nº Labs

(cores)

Processing Time

(second)

Relative

Speedup

Efficiency

(%)

Maximum

Singular Value

01 236.5987 1 100 167.2956

02 162.7237 1.45 73 166.9973

03 147.4094 1.60 53 167.5415

04 144.0799 1.64 41 167.4436

4. C O N C L U S I O N S

The determination of SVD (Singular Values Decomposition) of a square and random matrix

of dimension equal to 1000, through the Girko’s modified law, revealed that the COCGT

generated, for 4 labs, a time of processing (84.4 s) about 3 times smaller than the time (273.9)

produced by the cluster of the literature [1]. This way, the COCGT were faster in relation to

the other cluster, both using the same procedure and experimental conditions.

Low processing times were obtained in the resolution of systems of linear equations generated

for square and random matrix with dimensions relatively high: 10000 and 12000. The times

expenses in the resolution of those equations for 4 labs were: 26,9 ± 0,2 seconds, for the

matrix dimension equal to 10000, and 45,0 ± 1,5 seconds, for the matrix dimension equal to

12000. This means an excellent performance of our system (COCGT). In terms of FLOPS, it

was obtained a significant value of 25 GFLOPS for both the matrix.

The study of the COCGT behavior regarding applications of "parfor" and "spmd" in a same

problem with same size revealed adverse results among those two commands of programming

parallel with MATLAB. Therefore, the determination of the "maximum singular value" of a

random and square matrix of dimension equal to1000 revealed that the code with "parfor" it

produced results in that the time of processing decreased and the speedup increased with

increase of the labs number in an interval from 1 to 8 labs; a time of 43.23 s using 8 labs was

obtained. Already the code with "spmd", as discussed in the item 3.3, needs a larger size of

problem (a large matrix size) to have a relationship "number of processors/matrix size”

capable to produce a good performance. On the other hand, the values of the "maximum

singular value", regarding "parfor" and "spmd", were constant and about 63 for each lab as it

was of waiting, because it is the resolution of a same problem computational (with same size).

The determination of the behavior of COCGT, now with the "maximum singular value”,

being calculated from square and random matrix of dimensions equal to 1500 (using “parfor”)

and 7000 (using “spmd”), was done. The behavior with use of “parfor” was the same

happened previously using a square matrix with size equal to 1000. However, the times of

processing of the matrix with dimension equal to 7000, using "spmd", are smaller than the

processing times of the matrix of dimension 1500, using "parfor" (see tables 3.6 and 3.7).

Therefore, the code with "spmd", besides having a larger performance, supports larger work

load (size of problem) in relation to the code with "parfor."

ACKNOWLEDGMENTS

The authors are grateful to PETROBRAS/CNPq for the technical/financial support

REFERENCES

1. P. Luszczek, Enhancing Multicore System Perfomance Using Parallel Computing with

 MATLAB, The MathWorks News&Notes, Technical Articles, (2008).

 www.mathworks.com/parallelcomputing/technicalliterature.htm

2. C.C. Dantas, S. B. Melo, E. F. Oliveira, F. P. M. Simões, M. G. dos Santos, V. A. dos

 Santos, Measurement of density distribution of cracking catalyst in experimental rise with

 sampling procedure, nuclear instrum. and Methods in physis, B 266 (2008), pp.841-848

3. “FLOPS”, http://pt.wikipedia.org/wiki/FLOPS, Page posted in: May 27 of 2011

4. “Benchmark”, http:/pt.wikippedia.org/wiki/Benchmark, Page posted in: February 2 1, 2011

5. E. Ellis, Solving Large-Scale Linear Algebra Problems Using SPMD and Distributed Arrays.

 The MathWorks News &Notes, Technical Articles,

 www.mathworks.com/parallelcomputing/technicalliterature.htm

6. C. Moler, Parallel MATLAB: Multiple Processors and Multiple Core, The MathWorks

News &Notes, Technical Articles, (2007)

 http://www.mathworks.com/company/newsletters/technicalarticles.html

