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ABSTRACT 

 

A cluster for parallel computation with MATLAB software the COCGT – Cluster for Optimizing Computing in 

Gamma ray Transmission methods, is implemented. The implementation correspond to creation of a local net of 

computers, facilities and configurations of software, as well as the accomplishment of cluster tests for determine 

and optimizing of performance in the data processing.. The COCGT implementation was required by data 

computation from gamma transmission measurements applied to fluid dynamic and tomography reconstruction 

in a FCC-Fluid Catalytic Cracking cold pilot unity, and simulation data as well. As an initial test the 

determination of SVD – Singular Values Decomposition - of random matrix with dimension (n , n), n=1000, 

using the Girco’s law modified, revealed that COCGT was faster in comparison to the literature [1] cluster, 

which is similar and operates at the same conditions. Solution of a system of linear equations provided a new test 

for the COCGT performance by processing a square matrix with n=10000, computing time was 27 s and for 

square matrix with n=12000, computation time was 45 s. For determination of the cluster behavior in relation to 

“parfor” (parallel for-loop) and “spmd” (single program multiple data), two codes were used containing those 

two commands and the same problem: determination of SVD of a square matrix with n= 1000. The execution of 

codes by means of COCGT proved: 1) for the code with “parfor”, the performance improved with the labs 

number from 1 to 8 labs; 2) for the code “spmd”, just 1 lab (core) was enough to process and give results in less 

than 1 s. In similar situation, with the difference that now the SVD will be determined from square matrix with 

n= 1500, for code with "parfor", and n=7000, for code with "spmd". That results take to conclusions: 1) for the 

code with “parfor”, the behavior was the same already described above; 2) for code with “spmd”, the same 

besides having produced a larger performance, it supports a larger work load  



1. INTRODUCTION 

 

Large and complex software generating great amount of data are typical of activities, such as: 

artificial intelligence, molecular physics, meteorological forecast, researches of DNA, 

exploration of petroleum, etc. Such activities demand the use of machines of multiple 

processors and of super-computers supplied by great companies. These solutions offer a great 

performance, but they have a high cost and low scalability. Before the presented difficulties, 

Donald Becker and Thomas Sterling, working in the NASA (1994), developed a prototype of 

a system composed of several interlinked PC as a local net. That experience, "cluster" call, 

produced excellent results, being obtained high processing levels, equivalent to the super-

computers of the time, besides a bass cost in relation to those super-computers. A cluster can 

be defined as being a group of machines (nodes), usually without the need of peripheral, 

interlinked through a net; this machines work together, changing information amongst them to 

solve a certain task. Due to the high performance and low cost, the cluster of personal 

computers is quite used by the scientific communities, which have typical tasks that demand 

high processing power. In this context, the function of the cluster can be summarized as: 

given a complex problem and identified as being parallel, a server (master) should be 

responsible for the division of this problem in several pieces to be processed parallel in 

“nodes” slave (machines dedicated to the process). The solution found by each "node" is sent 

for the server such that the complete solution of the problem can be remounted. 

 

 

On the other hand, a limit of clock frequency around of 4 GHz for the current processors was 

appraised for the next years. This limit is due to the super-heating of the processors, having 

the need of a special and appropriate cooling. However, until the moment, didn't appear a 

project totally viable and that can be marketed. While this, now a strong tendency exists 

among the manufacturers of processors of increasing the number of cores (nuclei) for 

processor. However, the addition of cores doesn't mean increase in computing power. 

However, the improvements in performance, offered by the new hardware multi-cores, allow 

the obtaining of more potent clusters, generating a quite favorable environment for the 

parallel computation [1].  

 

 

The objective of the present work is the implementation of a cluster for parallel computation 

in MATLAB environment. That implementation was required by data computation from 

gamma transmission measurements applied to fluid dynamic and tomography reconstruction 

in a FCC - Fluid Catalytic Cracking - cold pilot unity, and simulation data as well [2]. This 

implicates in the accomplishment of facilities and configurations (software and hardware), as 

well as the accomplishment of tests to determine and to improve the performance of the 

cluster in data processing.  

 

 

 

 



2. METODOLOGY 

 

2.1. Brief Description of Parallel Computation in MATLAB Environment  
 

 

In general, a local net of computers PC (nodes calls) in a defined lay-out initially should be 

created. Then, software and services are distributed, installed and configured in agreement 

with the architecture of the system (hardware and software). The diagram of blocks contained 

in the Figure 2.1 gives a general vision of the parallel computation in MATLAB environment. 

The tasks and jobs are created by the client that sends them to the server, which through his 

scheduler (or “Job Manager”), manages the execution of the jobs in agreement with the 

procedure: 1) the tasks are sent for her execution in the workers; 2) the reception of the results 

of the workers is accomplished; 3) the results are sent to the client.  

 

 
 

          Figure 2.1 - Basic configuration of the parallel computation with MATLAB 

 

 

2.2. Speedup and Efficiency 

 

 

2.2.1. Speedup 

 

"Speedup" corresponds to the metric for evaluation of performance of a system of parallel 

computation. With base in values of speedup, the number of machines to be used in the 

cluster is determined. Two modalities exist to define the "speedup" specifically: "absolute 

speedup" and "relative speedup". The "absolute speedup" is defined as the total time elapsed 

in the execution of the sequential algorithm with only 1 processor, divided by the total time 

elapsed in the execution of the parallel algorithm with "P" processors. This relationship is 

valid when both architectures (sequential and parallel) possess the same problem size. On the 

other hand, the relative speedup is defined as the relationship among the time of execution of 
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a parallel algorithm, with 1 (one) processor, and the time of execution due to the same 

algorithm, with "P" processors. The reason to use relative speedup is that the performance of 

parallel algorithms varies with the number of available processors in a cluster. Then, being 

compared the same algorithm with several numbers of processors, it is possible to verify with 

more precision the degradation of parallelism use; this doesn't happen being used the absolute 

speedup. The equation for the relative speedup is expressed as: 

 

     � =
�(�)

�(�)
                                                                          (1) 

 

where S is the speedup, T (1) is the time spend in the execution of the parallel algorithm with 

a single processor and T (P) is the time spend in the execution of the same algorithm with "P" 

processors. In systems parallel ideals, the "speedup" is equal to the number of processors 

("P"). Already in practice, his value is smaller than "P".  

 

 

 

 

 

 

2.2.2. Efficiency 

 

The efficiency is another measure that can be used in the study of parallel architectures, being 

derived from the speedup definition. The efficiency tells the problem size and the processors 

number requested to maintain the efficient system. A direct relationship exists among 

processors number, problem size and the efficiency. Therefore, if the problem size goes 

constant, increasing the processors number, the efficiency will be decreased because of the 

overhead increase caused by the number of processors. Already if the problem size be 

increased, staying constant the processors number, the efficiency will be increased (in 

scalable parallel systems) due to the low overhead that is insignificant in relationship to 

computation of the problem. On the other hand, if both the problem size and processors 

number be increased, the efficiency will be constant. This way, it can stay a good efficiency 

(or Speedup), increasing the number of processors proportionally to the size of the problem. It 

is very difficult to find the exact limit of this proportionality for each architecture since the 

problem can be associated to countless aspects of hardware and software. The efficiency is 

determined in agreement with the following equation:  

 

     E=S / P                     (2)  

 

where "S" is the speedup and "P", the number of processors. Therefore, the number of 

processors should be chosen from way to maximize the efficiency and the speedup of the 

architecture. In systems parallel ideals, the efficiency is equal to 1 (one). In practice, the 

efficiency varies between 0 (zero) and 1 (one). 

 



2.3. Flops and Benchmarks 

 

 

2.3.1. Flops 

 

FLOPS (or flops) is a computation acronym that means FLoating point OPerations per 

Second. FLOPS can be defined as being an unit of measure used to evaluate the processing 

capacity and, therefore, the performance of a computer. This acronym is used in several fields 

of the science and engineering, where large use of calculations with flotation point is made, 

similar to the old expression "instructions per second”. Since the computation devices have 

enormous processing capacity, it is recommended to use larger units than FLOPS, this is, their 

multiples. The multiples more used are: megaflops (MFLOPS), gigaflops (GFLOPS), 

teraflops (TFLOPS), petaflops (PFLOPS) and exaflops (EFLOPS) [3].  
 

 

2.3.2. Benchmarks 

 

The FLOPS is used as measure unit of flotation point if a benchmark is present in all 

computer of interest. A benchmark is a program that accomplishes tests in a certain machine 

with the objective of to measure or to foresee her performance and to emphasize the strong 

and weak points of her architecture. Benchmarks can be classified in agreement with the 

application class for which they are prepared as, for instance, scientific computation, net 

services, applications multimedia, processing of signs, etc. Among the benchmarks, Linpack 

is one of the more used by the scientific community. Her current version - HPL (High 

Performance Linpack) - it contains two groups of routines: one for decomposition of matrix 

and other to solve the system of resulting linear equations of the decomposition. Her 

application is mainly in machines that use software for calculations scientific and of 

engineering, because the operations more used in these types of applications are in point-

flotation [4]. 

 

 

2.4. Experimental Procedure 
 

 

2.4.1. Computer type  

 

Two computers were used for the formation of the cluster (server e worker) and more one 

computer designated to be the client. Both computers possess the same hardware 

configuration, which is described below as:  

 

CPU:  Intel Colors i7 860, 2.8 GHz, 8 MB, LGA 1156 

Plate Mother:  Intel DP55WG 

Memory (4 GB):  2x (DDR3, 2GB, 1333 MHz, KINGSTON, KVR 1333, D3N9/2GB) 

Plate of Video:  1 GB, GF9400GT, PCI EXP, NVIDIA 

Hard Disk (HD):  1000 GB, SATAN, 32 MB, 5400 RPM 

Plate of Net:  10/100/1000 MB / s 



2.4.2. Installation and configuration of the cluster (COCGT) 

 

The computers, with the architecture described above, were installed and configured in 

agreement with the manuals of installation and configuration (version 4.3) supplied by 

MathWorks. These manuals are distributed in 4 (four) volumes (or apprenticeships), whose 

titles are:  

Stage 1/4: Installing MATLAB Distributed Computing Server. 4.3 on to Windows Operating  

      System Cluster 

Stage 2/4: Configuring MATLAB Distributed Computing Server. 4.3 go Uses with Job Mana- 

      ger on Windows Operating Systems 

Stage 3/4: Installing Parallel Computing Toolbox. 4.3 on Windows Operating Systems 

Stage 4/4: Testing Your Installation of MATLAB Distributed Computing Server-4.3 with Job 

                 Manager 

 

Initially, a local net was created being formed by three nodes (computers), two of them being 

designated as server and "worker", while the other "node" was designated as client (Figure 

2.2). This way, the Cluster for Optimizing Computing in Gamma ray Transmission methods - 

- COCGT was created. Soon after, the installations and configurations of software and services 

were distributed agreement with the figure 2.2. The software MATLAB Distributed Computing Server 

(MDCS) was installed and configured in nodes Server and Worker, while the software Parallel 

Computing Toolbox (PCT) was installed and configured in the Client node. As for the Job Manager, 

the same is contained in the software MDCS, being activated during the installation and configuration 

of MDCS in COCGT. Those are the software more important of the COCGT system. 

 

 

 

 

 

 

 

 

 

 

 

 
 

       Figure 2.2 – Block diagram of the COCGT  
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2.4.3. Testes with the cluster 
 

 

i) Test 1: Determination of singular values with application Girko’s law  
 

The Girko’s law establishes that the eigenvalues of a random matrix N for N, whose elements 

are obtained of a normal distribution, tend to lie inside a circle of radius sqrt(N) for N large 

‘values. This law can be represented by the following MATLAB code [1]: 

 

          N = 1000 

          Plot (eig (randn (N)) / sqrt (N), '.'); 
 

The execution of the code above generates the Figure 2.3 below. Each point represents 1 (one) 

eigenvalue. It is observed that most of the eigenvalues lives inside in a circle of ray equal to 1 

(one) and are centered in the origin of the axes, an indication that, for the Girco’s law, the 

value of a eigenvalue doesn't exceed the square root of the size of the matrix. The Girko’s law 

can be modified to be applied in the determination of singular values [1]. For the application 

of this law in the determination of SVD (Singular Values Decomposition), through 

MATLAB, the values of “max (svd (randn (N)))” relative to the arbitrary values of the 

variable "N" are fixed. The application of the modified Girko’s law reduces the time of 

computation, allowing the numeric estimate of the singular values for any normal and random 

matrix [1]. 

 

Figure 2.3. Eigenvalues of random and square matrix of size 1000, normalized for  

                   1/sqrt (1000); the elements of the matrix are drawn from normal distribution 

 

 

The parallel code of the Figure 2.4 generates a random matrix starting from normal 

distribution and her SVD is determined, besides registering the time elapsed in the loop 

execution. The “parfor-loop” of the code below has as basic concept the same of "for-loop” 

(MATLAB pattern). The difference among them is in the procedure, for which the body of 

the loop (loop declarations) is executed. With the "parfor-loop", the execution is 

accomplished in parallel and with "for-loop", the execution is made in the sequential way 

[5],[6]. 

 



y = zeros (1000, 1); 

tic 

parfor n=1:1000 

     y (n) = max (svd (radn (n))); 

end 

toc 

plot (y) 
 

          Figure 2.4.- Parallel code in MATLAB for SVD determination 

                              of normal and random matrix 

 

 

This same parallel code (Figure 2.4) was used by the literature [1] for determination of the 

parameters of performance: Execution Time, Speedup and Efficiency in function of the labs 

number. The data of the mentioned literature were obtained in a system similar to our cluster 

(COCGT). Therefore, for the comparison of results, the parameters above also were 

determined in function of the labs number. In the COCGT, the operation conditions of 1, 2, 3 

and 4 labs were used. The labs were fixed by the parallel command "MATLAB pool". The 

determination of the times of execution, for each situation (for each lab number), made 

possible the determination of the values of “speedup” (relative) and of the “efficiency”. 
 

 

ii) Test 2: Evaluation of the cluster with the application of the benchmark Linpack HPL 

 

The objective of that test was the performance evaluation of the COCGT through of the 

benchmark "HPCCLINPACK", an implementation for MATLAB of the benchmark “Global 

HPCC HPL”, which is own Linpack in her version HPL (High Performance Linpack). That 

benchmark proposes the resolution of a system of linear equations obtained of a real matrix 

"A" of size (n , n) and of a column vector "B" with size “n”, both obtained random way. 

Therefore, the time spend in the resolution of the equation A*X = B, whose solution is given 

by X = (A
-1
) * B, is measured. That time corresponds to the metric of performance of the used 

system. The program HPCCLINPACK contained in MATLAB and used to solve this problem 

is presented in Figure 2.5. 
 

 

m=input('which is the size of the matrix?');% "m" is the dimension of a 

square and random matrix  
matlabpool open local 4; % Fixe the labs number 
spmd 
% Create a distributed matrix in the 2d block cyclic distribution and a 

distributed column vector 1d 
A=codistributed.randn(m,m,codistributor2dbc); 
b=codistributed.rand(m,1); 
% Time of solution of the linear system  
tic; 
x=A\b; 
t=toc; 
%Need to convert to a 1d distribution for the cheking cod below  
A=redistribute(A, codistributor1d); 



% Compute scaled residuals 
r1=norm(A*x-b,Inf)/(eps*norm(A,1)*m); 
r2=norm(A*x-b,Inf)/(eps*norm(A,1)*norm(x,1)); 
r3=norm(A*x-b,Inf)/(eps*norm(A,Inf)*norm(x,Inf)*m); 
if max([r1,r2,r3])>16 
    error('Failed the HPC HPL benchmark'); 
end 
end 
% Performance in GFLOPS; 
TamDados=8*m^2/(1024^3) 
perf=((2/3)*m^3+(3/2)*m^2)/max([t{:}])/1.e9 
tmax=max([t{:}]) 
matlabpool close 
 

Figure 2.5. Code of the benchmark HPCCLINPACK used in present work. 

 

 

In that tests, squares matrix and columns vectors with dimensions equal to 10000 and 12000 

were used. Through the measures of processing time, speedup and efficiency, in relation to 

the labs (cores) number and the matrix dimensions above were fixed. 

 

 

iii) Test 3: Behavior of the COCGT in relation to the use of "parfor-loop" and "spmd" 

 

The objective of that test was the verification of the COCGT behavior in relation to the use of 

"parfor-loop" and "spmd" in different codes, but with the same “problem” (calculations) and 

same “problem size” (amount of calculations) Here, it is opportune a definition of "spmd” 

(Single Program Multiple Dates)": It is an environment of MATLAB parallel programming 

that allows the creation of a code block (spmd-end) that is executed in all of the available labs 

(workers) in the cluster. For the test, the following codes were used (Figure 2.6):  

 

 

Code a:      Code b: 
 

matlabpool nlab     matlabpool nlab 

Y=zeros (1000,1);     D=distributed.randn (1000); 

tic       tic 

parfor n=1:1000     spmd 

    Y (n) = max (svd (randn (n)));       m1=max (svd (D)); 

end       end 

toc       toc 

SVmax=max (Y)     SVmax=m1 

matlabpool close     matlabpool close 
 

Figure 2.6. Codes used in verification of the COCGT behavior in relation to the use of 

        "parfor" and "spmd 

 

 



The two codes above have different structures: The “code a” of the Figure 2.6 is a loop that 

uses the command "parfor", while the “code b” uses the "spmd block” (spmd -.end). The 

“problem” and “problem size” are the same for both codes, being that the “problem” is the 

calculation of the "maximum singular value" and “problem size” correspond to the dimension 

(n, n) of the random matrix, being in this case n=1000. The calculated value of “maximum 

singular value” should be the same in the two codes. The metric used for the evaluation of the 

performance was the time consumed in the execution of each code. Two batteries of tests 

were accomplished: one with variation of 1 up to 4 labs for the “code b" and the other with 

variation of 1 up to 8 labs for the “code a", fastened through the MATLAB command 

"matlabpool."  

 

 

iv) Test 4: The  cluster behavior in relation to use of "parfor" and "spmd" in the  

                  determination of SVD on Square Matrix of Dimension above 1000 

 

This section of tests had the objective of verifying the behavior of the COCGT in the 

determination of SVD with "parfor" and "spmd" in square and random matrix with 

dimensions above 1000 The codes of the Figure 2.7 – “code c” and “code d” – are the same 

used in test previous (Test 3), but now with matrix of dimensions equal to 1500 and 7000, 

where the "maximum singular value" will be evaluated with "parfor and “spmd” respectively. 

 

 

Code c:      Code d: 
 

matlabpool nlab     matlabpool nlab 

Y=zeros (1500,1);      D=distributed.randn (7000); 

tic        tic 

parfor n=1:1500      spmd 

    Y (n) = max (svd (randn (n)));        m1=max (svd (D)); 

end        end 

toc        toc 

SVmax=max (Y)      SVmax=m1 

matlabpool close      matlabpool close 
 

Figure 2.7. Codes used in the verification of the COCGT behavior in relation to the use  

                   of "parfor" and "spmd" on Square Matrix of Dimensions 1500 and 7000 

 

 

3. RESULTS AND DISCUSSION 

 

3.1. Results Obtained with the Test 1  

 

The results obtained with the accomplishment of the Test 1 (item 2.4.3 - i), which was an 

application of the modified Girko’s law to determine SVD of matrix, are in the Tables 3.1 and 

3.2. A comparison among these tables reveals that the times of execution of the parallel code 



(Figure 2.4), contained in the Table 3.1, are larger in relation to the times than are contained 

in the Table 3.2. This means that our system was, for all of the labs numbers, faster than the 

system of the literature [1]. It can be that this difference is due to the difference among the 

architectures of computers involved in the tests. Our processor model has 4 (four) cores and 

the following specification:  
 

Intel Cores i7 860 - 2,8 GHz. CACHE 8 MB. LGA 1156. 
 

This model has two technologies of data processing. One of them is the technology “Turbo 

Boost" that is activated when the Operating System (OS) request the highest state of 

performance of  the  processor.  Therefore   her   clock   frequency   is   increased.   The other  

 

 

   Table 3.1 – Determination of the performance of a parallel code in function  

                                of the amount of labs of the cluster – literature data [1] 
 

N
o
  Labs 

(cores) 

Processing Time 

(seconds) 

Relative 

Speedup 

Efficiency 

(%) 

1 870.1 1.00 100 

2 487.0 1.79 89 

3 346.2 2.51 83 

4 273.9 3.17 79 

 

 

Table 3.2 – Determination of the performance of a parallel code in 

                    function of the amount of labs of the COCGT 
 

N
o
  Labs 

(cores) 

Processing Time 

(seconds) 

Relative 

Speedup 

Efficiency 

(%) 

1 166.5±0,2 1.00 100 

2 99.0±0,2 1.68 83 

3 88.2±0,4 1.89 63 

4 84.4±0,2 1.97 49 

 

 

is denominated of multiple-segmentation or processing of multiple-tasks, presenting, a 

parallel architecture. This allows each nucleus of the processor to work with two tasks at the 

same time, what reduces the time of processing of the algorithm. In relation to the model of 

the literature, it was only informed that was a processor of 4 cores. 

 

 

 



3.2. Results Obtained with the Test 2 

 

The results obtained with the code used in the Test 2 (Figure 2.5) are contained in the Table 

3.3 below. The analysis of this table reveals that: 1) it happens mistake for lack of memory 

when 1 or 2 labs are used in the processing of square and random matrix of dimensions 

corresponding to 10000 and 12000; 2) in the processing of the matrix with dimension equal to 

10000, when it is used 3 and 4 labs, the times expenses are about 28 and 27 seconds, 

respectively; 3) in relation to processing of the matrix with dimension equal to 12000, being 

used the same amount of labs (3 and 4 labs), the times expenses are about 48 and 45 seconds, 

respectively. The times here obtained are small in if treating of resolution of linear equations 

systems starting from matrix with size relatively large. This denotes a good performance of 

the COCGT. The metric FLOPS, another important metric that evaluates the cluster 

performance, generated values in the interval from 24 to 26 GFLOPS in relation to the 

previously mentioned matrix.  

 

 

Table 3.3 – Performance of the COCGT in the resolution of systems of linear equations  

                   obtained of square and random matrix of dimensions 10.000 and 12.000 

 

Matrix 

Dimension 

N
o
 Labs 

(cores) 

Processing Time 

(seconds) 

Performance 

(GFLOPS) 

Data Size 

(GB) 

10000 

01
*
 

02
*
 

03 

04 

- 

- 

27.82±0.05 

26.89±0.18 

- 

- 

24.47±0.21 

25.60±0.70 

0.7451 

12000 

01
*
 

02
*
 

03 

04 

- 

- 

47.60±0,37 

44.97±1,53 

- 

- 

23.97±0,04 

24.80±0,17 

1.0729 

     (*) . It was not possible to obtain the data for lack of memory in the computation of the problem  

                            with 1 and 2 labs (cores) 

 

 

3.3 - Results Obtained with the Test 3 

 

The behavior specifically depends on the computer/processor type, environment of parallel 

programming and algorithm type. In our case (COCGT), different behavior happened in 

relation to the times of processing among the two parallel codes presented in the Figure 2.6 

(item 2.4.3-iii), both possessing the same problem with same size. In this case, the “same 

problem” is the determination of SVD of a square and random matrix, while the “same 

problem size” is the dimension of the matrix (n, n), that in the current case it is n=1000. For 

the code "parfor" (Figure 2.6 – code a), the time of processing decreased with the increment 

of labs number from 1 to 8 labs (Table 3.4). This means that the performance increased with 

the labs number; the time of processing declined of 169,55 seconds (obtained  with 1 lab) for 

43,20 seconds (obtained with 8 labs). For the code with "spmd” (Figure 2.6 - code b), in 



agreement with the Table 3.5, were generated very small and close times of processing (< 1 s) 

with the use from 1 to 4 labs This means that the work load (problem size) for that code was 

very small; only 1 (one) lab was enough to process the code in less than 1 (one) second. Since 

the same hardware architecture (same cluster), the same programming environment 

(MATLAB), the same problem with same size were maintained, this difference is due to the 

two types of employed codes. It is very probable that the "code a" of the Figure 2.6 (with 

"parfor") is in a great relationship: "number of processors/work load”. While the code "b" of 

the Figure 2.6 (with "spmd" block), needs an increase of size of the problem (increase of the 

work load) to reach a relationship "number of processors/work load” in way to produce a 

good performance. However, the executions of the two codes above produced the same result 

for the "maximum singular value" (about 63) of a matrix random of dimension n=1000 

(Tables 3.4 and 3.5). 

 

 

Table 3.4 - Behavior of the COCGT regarding the command "parfor" in the  

                   determination of SVD of a square and random matrix of dimension 1000. 
 

Nº Labs 

(cores) 

Processing Time 

(second) 

Relative 

Speedup 

Efficiency 

(%) 

Maximum 

Singular Value 

01 169.5529 1 100 63.2856 

02 100.0698 1.69 84 63.2747 

03 88.9894 1.91 64 63.4354 

06 49.1429 3.45 57 63.2365 

07 46.3321 3.66 52 63.3045 

08 43.2354 3.92 49 63.1232 

 

 

Table 3.5 – Behavior of the COCGT regarding the block of code "spmd -end" in the 

         determination of SVD in a square and random matrix of dimension 1000  
 

Nº Labs 

(cores) 

Processing Time 

(second) 

Relative 

Speedup 

Efficiency 

(%) 

Maximum 

Singular Value 

01 0.9324 1 100 63.0787 

02 0.7798 1.19 59 63.2471 

03 0.7609 1.22 41 63.0142 

04 0.8199 1.13 28 63.1278 

 

 



3.4 - Results Obtained with the Test 4 

 

The results regarding the Test 4 are in the Tables 3.6 and 3.7. The analysis of the data reveals 

that the determination of SVD of a square matrix of dimension n=1500, using the code with 

"parfor", was slower than the determination of SVD of a square matrix with n=7000, using the 

code with "spmd". The processing times generated were 883 - 524 s, for code with “parfor” 

and 237-144 s, for code with “spmd”´. The intervals of time here mentioned were obtained 

with the labs numbers varying of  of 1 to 4 labs. Now, both codes above possess the same 

behavior: The times of processing decreased with the labs number varying of 1 up to 4. 

However; the code with “spmd” besides having larger performance (smaller times of 

processing), supports a larger work load (matrix size) in relation to the code with "parfor".  

 

 

       Table 3.6 – Behavior of the COCGT in relation to the Application of "parfor" in the 

                determination of SVD in a matrix of Dimensions 1.500 for 1.500 
 

Nº Labs 

(cores) 

Processing Time  

(second) 

Relative 

Speedup 

Efficiency 

(%) 

Maximum 

Singular Value 

01 883.2376 1 100 77.8250 

02 592.3603 1.49 75 77.5470 

03 542.3689 1.63 54 77.5533 

04 524.5181 1.68 42 77.6263 

 

 

Table 3.7 – Behavior of the COCGT in relation to the application of the "spmd" block  

                   for the determination of SVD in matrix of dimension equal to 7000 
 

 Nº Labs 

(cores) 

Processing Time  

(second) 

Relative 

Speedup 

Efficiency 

(%) 

Maximum 

Singular Value 

01 236.5987 1 100 167.2956 

02 162.7237 1.45 73 166.9973 

03 147.4094 1.60 53 167.5415 

04 144.0799 1.64 41 167.4436 

 

 

4. C O N C L U S I O N S 

 

The determination of SVD (Singular Values Decomposition) of a square and random matrix 

of dimension equal to 1000, through the Girko’s modified law, revealed that the COCGT 

generated, for 4 labs, a time of processing (84.4 s) about 3 times smaller than the time (273.9) 



produced by the cluster of the literature [1]. This way, the COCGT were faster in relation to 

the other cluster, both using the same procedure and experimental conditions. 

 

 

Low processing times were obtained in the resolution of systems of linear equations generated 

for square and random matrix with dimensions relatively high: 10000 and 12000. The times 

expenses in the resolution of those equations for 4 labs were: 26,9 ± 0,2 seconds, for the 

matrix dimension equal to 10000, and 45,0 ± 1,5 seconds, for the matrix dimension equal to 

12000. This means an excellent performance of our system (COCGT). In terms of FLOPS, it 

was obtained a significant value of 25 GFLOPS for both the matrix. 

 

 

The study of the COCGT behavior regarding applications of "parfor" and "spmd" in a same 

problem with same size revealed adverse results among those two commands of programming 

parallel with MATLAB. Therefore, the determination of the "maximum singular value" of a 

random and square matrix of dimension equal to1000 revealed that the code with "parfor" it 

produced results in that the time of processing decreased and the speedup increased with 

increase of the labs number in an interval from 1 to 8 labs; a time of 43.23 s using 8 labs was 

obtained. Already the code with "spmd", as discussed in the item 3.3, needs a larger size of 

problem (a large matrix size) to have a relationship "number of processors/matrix size” 

capable to produce a good performance. On the other hand, the values of the "maximum 

singular value", regarding "parfor" and "spmd", were constant and about 63 for each lab as it 

was of waiting, because it is the resolution of a same problem computational (with same size).  

 

 

The determination of the behavior of COCGT, now with the "maximum singular value”, 

being calculated from square and random matrix of dimensions equal to 1500 (using “parfor”) 

and 7000 (using “spmd”), was done. The behavior with use of “parfor” was the same 

happened previously using a square matrix with size equal to 1000. However, the times of 

processing of the matrix with dimension equal to 7000, using "spmd", are smaller than the 

processing times of the matrix of dimension 1500, using "parfor" (see tables 3.6 and 3.7). 

Therefore, the code with "spmd", besides having a larger performance, supports larger work 

load (size of problem) in relation to the code with "parfor." 
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