Náhrada za soubor monitorů neutronového toku Au+Zr pro k₀-NAA

Marie Kubešová, Ivana Krausová, Jan Kučera

Ústav jaderné fyziky AV ČR, v.v.i., Řež

Při použití k_0 standardizace v neutronové aktivační analýze (k_0 -NAA) je potřeba stanovit parametry neutronového toku α , f a F_c^{-1} . Parametr F_c je definován² následovně:

$$F_{c} = \frac{A_{\text{sp},Au} \times 10^{-6}}{K_{0,Au}(Au) \times (G_{th,Au} \times f + G_{e,Au} \times Q_{0,Au}(\mathcal{A}) \times \mathcal{C}_{p,Au})}.$$
(1)

V průběhu vývoje k_0 -NAA bylo navrženo několik metod jejich stanovení^{1,3}, nicméně v případě reaktoru LVR-15, a dalších víceúčelových výzkumných reaktorů s často se měnící konfigurací aktivní zóny (a tudíž i parametrů neutronového toku), je k dispozici pouze metoda "bare multi-monitor" (nebo "Cd-covered multi-monitor" pro ENAA), při které je možné zároveň ozařovat zkoumané vzorky a současně s nimi i aktivační monitory neutronového toku. Po dlouhou dobu byl pro tuto metodu doporučován pouze soubor monitorů Au+Zr¹. Před několika lety byl však navržen nový soubor pro rutinní analýzy sestávající se z Au+Mo+Cr, který měl být vhodný hlavně pro dobře termalizované neutronové spektrum (vysoké *f*). Jeho použitelnost měla být srovnatelná s Au+Zr.⁴ Nedávno zveřejněné výsledky však ukázaly výrazné rozdíly studovaných parametrů při použití obou typů monitorů^{5, 6}. Tudíž po úspěšné implementaci k_0 -NAA v naší laboratoři⁷⁻¹⁰ bylo provedeno srovnání vhodnosti obou souborů, které vedlo k poněkud neuspokojivým závěrům pro soubor Au+Mo+Cr.¹¹

Pro naše experimentální podmínky není ani kombinace Au+Zr zcela vhodná z následujících důvodů:

- 1. krátký poločas 97 Zr- 97m Nb (T_{1/2} = 16,74 h),
- 2. problém s fotoneutrony z Be reflektoru pro 95 Zr ($\bar{E}_r = 6260 \text{ eV}$)¹²,
- 3. nízká hodnota k_0 pro oba nuklidy Zr,
- 4. použití nižší navážky (cca 3 mg) IRMM-530RA 0,1%Au-Al folie místo 10 mg, pro kterou byla certifikována hodnota s nejistotou 1,003 mg kg⁻¹ \pm 0,012 mg kg⁻¹. To může vést k vyšším nejistotám výsledků k_0 -NAA, protože relativní směrodatná odchylka obsahu zlata (0,30 %) stanovená pro vzorky folie o hmotnosti 10 mg v původní studii¹³, se může zvýšit. Použití 10 mg navážek by vedlo v našich podmínkách (hustota toku tepelných neutronů až 7.10¹⁷ m⁻² s⁻¹) k nadbytečně vysoké radioaktivitě ²⁸Al při krátkodobém ozařování a ¹⁹⁸Au při dlouhodobém ozařování,
- 5. rozdílné navážky jednotlivých prvků v každém použitém souboru monitorů.

Bylo tedy naší snahou najít novou kombinaci monitorů, která by splnila následující požadavky:

- 1. prvky s dobře aktivovatelnými nuklidy s parametry Q_0 a \overline{E}_r v širokém intervalu hodnot,
- soubor optimalizovaný pro jedno měření (cca 30 min.) po vymírací době přibližně 4-7 dnů,
- 3. jednoduchá příprava s ohledem na chemické vlastnosti prvků,
- 4. stejná hmotnost prvku v každém použitém souboru monitorů pro zjednodušení zadávání a výpočtu dat do výpočetního software,
- 5. použitelnost jednoho typu souboru jak pro INAA, tak ENAA.

Experimentální část

Prvky s vhodnými vlastnostmi svých dlouhodobých radionuklidů byly do souboru monitorů vybrány z publikace [14] a několik vybraných kombinací prvků bylo testováno. Roztoky Rb a Zn byly připraveny rozpuštěním dobře definovaných sloučenin (RbNO₃, 99.99 %, Aldrich, USA a granulovaný Zn, p.a., Lachema, Česká republika). RbNO₃ byl rozpuštěn v deionizované vodě, zatímco Zn ve zředěné (1:5) podvarové HNO₃. Roztoky Au a Mo byly připraveny ze standardních referenčních materiálů (SRM) amerického National Institute of Standards and Technology (NIST) NIST SRM-3121 Gold Standard Solution a NIST SRM-3134 Molybdenum Standard Solution¹⁵ gravimetrickým ředěním tak, aby pipetováním 50 µl zředěných roztoků bylo docíleno požadovaného množství prvků. Uvedený objem byl pipetován na disky z chromatografického papíru Whatman 1 o průměru 16 mm gravimetricky kalibrovanou pipetou, které byly usušeny pod infralampou při teplotě nepřesahující 40°C a zataveny do diskových polyethylenových (PE) pouzder o průměru 25 mm vytvořených ze dvou fólií o tloušť ce 0,2 mm. Použité chemikálie, hmotnosti jednotlivých prvků a relevantní jaderná data jsou uvedeny v Tab. 1.

Nuklid	Původ	Hmotnost prvku v monitoru (µg)	T _{1/2}	Eγ (keV)	k ₀ (nejistota,%)	Ē _r (eV) (nejistota, %)	Q ₀ (nejistota, %)	
¹⁹⁸ Au	SRM-3121	$3,260 \pm 0,008$	2,7 d	411,8	1 (0)	5,65 (7,1)	15,7 (1,8)	
	IRMM-530R	~ 6						
⁹⁹ Mo- ^{99m} Tc	SRM-3134	$291,3 \pm 1,0$	65,9 h	140,5	5,27E-4 (0,5)	241 (20)	53,1 (6,3)	
⁸⁶ Rb	RbNO ₃	$325,3 \pm 0,5$	18,6 d	1077,0	7,65E-4 (1,0)	839 (6)	14,8 (2,5)	
⁶⁵ Zn	Zn broky	992,9 ± 1,8	244,3 d	1115,5	5,72E-3 (0,4)	2560 (10)	1,908 (5,0)	
⁹⁷ Zr ^{97m} Nb	Zr folie	16 000	16,7 h	743,3	1,24E-5 (0,3)	338 (2,1)	251,6 (1,0)	
⁹⁵ Zr	Goodfellow	~ 10 000	64,0 d	724,2 756,7	8,90E-5 (1,3) 1,10E-4 (1,3)	6260 (4)	5,31 (3,3)	

Tab 1 Jaderné parametry použitých nuklidů Au, Mo, Rb, Zn a Zr¹⁴

Soubory monitorů Au+Zr byly připraveny jako disky s průměrem 6 mm z 99,8 % Zr folie (Goodfellow UK, ZR000260 foil, tloušťka 0,125 mm) a 0,1%Au-Al folie (IRMM Belgium, Nuclear reference material IRMM-530RA, tloušťka 0,1 mm)^{16,17}, které byly zváženy a zataveny do PE pouzder. Rozdíly ve složení a geometrie jednotlivých typů monitorů byly vzaty v úvahu při zpracování dat v programu Kayzero for Windows.

Pro porovnání a verifikaci výsledků při použití různých kombinací monitorů byly použity tři různé NIST SRM: 1547 Peach Leaves, 2711 Montana Soil a 1633b Constituent Elements in Coal Fly Ash¹⁵. Byla připravena tři ozařovací pouzdra s dvěma páry souborů monitorů Au+Zr a Au+Mo+Rb+Zn a jedním vzorkem od každého NIST SRM (baleny do PE pouzder stejným způsobem jako monitory), jak je naznačeno v Tab. 2.

Vzorky a monitory v PE pouzdrech byly zabaleny do Al folie, aby byl zaručen dostatečný odvod tepla a hermeticky zataveny do Al ozařovacího kontejneru. Během předběžných experimentů nebyla pozorována žádná deformace neutronového spektra. Ozařovací kontejnery s monitory a vzorky byly ozářeny ve dvou kanálech reaktoru LVR-15 dle následujícího schématu:

- 1. 3 hodiny v kanálu H8 za okrajem aktivní zóny v Be reflektoru použitím celého spektra neutronů s hustotou toku tepelných neutronů $4 \cdot 10^{17} \text{ m}^{-2} \text{ s}^{-1}$,
- 2. 90 minut v kanálu H6 vedle palivového článku použitím celého spektra neutronů s hustotou toku tepelných $7 \cdot 10^{17} \text{ m}^{-2} \text{ s}^{-1}$,
- 3. 2 hodiny v kanálu H6 použitím pouze epitermálních neutronů (v ozařovacím pouzdře stíněném Cd plechem o tloušť ce 1 mm ENAA)¹⁸.

Pozice	Vzorek	Hmotnost (mg)
1	0,1%Au-Al+Zr-1	~ 6 + ~ 16
2	Au+Mo+Rb+Zn-1	vis Tab 1
3	NIST SRM-1547	~ 100
4	NIST SRM-2711	~ 50
5	NIST SRM-1633B	~ 50
6	0,1%Au-Al+Zr-2	~ 6 + ~ 16
7	Au+Mo+Rb+Zn-2	viz Tab 1

Tab 2 Přibližné hmotnosti vzorků a monitorů a jejich umístění v ozařovacích pouzdrech

Před spektroskopickým měřením ozářených monitorů a vzorků byla odstraněna Al folie a povrch PE pouzder byl očištěn omytím v zředěné kyselině dusičné a deionizované vodě. Gama-spektra vzorků a monitorů byla měřena koaxiálním HPGe detektoru s následujícími parametry: relativní účinnost 77,8 %, rozlišení FWHM 1,87 keV @1332,5 keV a poměr peak-to-Compton 82,5:1. Detektor byl připojen ke gama spektrometru Canberra Genie 2000 soustavou lineární elektroniky, která obsahovala loss-free counting modul (LFC Canberra 599, duální mód) k opravě efektu nakupení impulzů a dynamických změn mrtvé doby. Vzorky byly měřeny po vymíracích dobách 4-5 dní a 4 týdnů.

Měření souborů monitorů bylo provedeno v souladu s metodikou stanovení parametrů neutronového toku metodami "bare triple-monitor" a "Cd-covered monitor"^{1, 3}. Jak Au+Zr tak Au+Mo+Rb+Zn byly měřeny v referenční geometrii 20 cm po vymírací době 3-4 dny. Během předběžných experimentů bylo zjištěno, že oprava na blank je při dané metodice práce zanedbatelná jak pro vzorky, tak pro monitory.

Pro nabírání spekter a jejich vyhodnocení byl použit software Canberra Genie 2000. Výsledky k_0 -NAA byly vypočteny pomocí programu Kayzero for Windows². V tomto programu byly použity následující hodnoty faktorů tepelného a epitermálního samostínění neutronů, G_{th} a G_e: pro 0,1% Au-Al folii G_{th} a G_e = 1, pro Zr folii G_e = 0,983 pro reakci ⁹⁴Zr(n, γ)⁹⁵Zr a G_e = 0,973 pro reakci ⁹⁶Zr(n, γ)⁹⁷Zr^{1, 3}. Pro další nuklidy a matrice byly použity hodnoty G_{th} = G_e = 1 (jak byly vypočteny v programu Kayzero for Windows²). Tolerance pro rozpoznání píku byla nastavena na hodnotu 1,1 keV jednostranně.

Výsledky a diskuze

Reaktor LVR-15 poskytuje ozařovací služby pro více než 20 vědeckých týmů nebo průmyslových aplikací, tudíž každá konfigurace aktivní zóny (AZ) je sestavována přibližně na dobu pouze tří týdnů, po kterých se konfigurace AZ mění. Při úpravách konfigurace AZ dochází k nezanedbatelným změnám parametrů neutronového toku, někdy i v rámci jedné provozní kampaně. Tyto experimentální podmínky dovolují použít pouze simultánní stanovení parametrů neutronového toku společně s ozařovanými vzorky. Výsledky stanovení těchto parametrů pro různé ozařovací kanály jsou uvedeny v Tab. 3.

Kanál	H6 (INAA)		H6 (ENAA)			H8 (INAA)			
Soubor	α	f	$F_{c,Au}$	α	f	$F_{c,Au}$	α	f	$F_{c,Au}$
Au+Mo+Zn	-0,007	24,7	823 000	-0,039	0	774 000	0,019	48,9	235 000
Au+Rb+Zn	-0,009	24,7	822 000	-0,026	0	811 000	0,004	49,5	231 000
Au+Mo+Rb	-0,009	25,3	811 000	-0,006	0	833 000	0,022	49,2	234 000
Au+Zr	0,010	25,7	817 000	-0,005	0	824 000	0,032	48,9	228 000

Tab 3 Parametry neutronového toku

K stanovení jejich nejistot bylo použito aplikace Kragten-NPI¹⁹. Bylo zjištěno, že relativní nejistota parametru α pomocí souboru monitorů Au+Mo+Rb+Zn byla mezi 70 % a 120 %, což je v souladu s tvrzením³, že "celková nejistota je v rozsahu 5-10 % pro vysoké hodnoty α $(\alpha \sim 0.1)$ a 50 % a víc procent pro α , která se blíží nule $(\alpha \sim 0.01)$ ". Pro hodnoty f (v rozmezí od 25 do 45) byly stanoveny relativní nejistoty v intervalu 15-18 % a pro parametr F_c v rozmezí 10-14 %. Data v Tab. 3 nejeví významný rozdíl mezi hodnotami f a F_c (vzhledem k jejich nejistotám) v jednotlivých ozařovacích kanálech při použití rozdílných kombinací monitorů. Poněkud nižší hodnoty F_c v kanálu H6 při ozařování pouze epitermální částí spektra a použití monitoru Zn je pravděpodobně způsobeno nedokonalou konstrukcí Cd pouzdra, které neodstíní všechny tepelné neutrony. Radionuklid 65 Zn má nejnižší hodnotu Q_0 ze všech testovaných monitorů (1,908), tudíž jeho použití v případě ENAA není vhodné, pokud ve spektru zůstává i malá část tepelných neutronů. Další nevýhoda použití tohoto monitoru je nestálost Au v přítomnosti Zn při dlouhodobějším skladování zásobního roztoku. Proto pokud má soubor obsahovat jak Zn tak Au a další prvky, je nutné pipetovat monitory ze dvou roztoků. Ve všech ozařovacích kanálech byly pozorovány výrazně odlišné hodnoty α. Avšak vzhledem k blízkosti hodnot α k nule a velkým nejistotám, je jejich vliv na výsledky k_0 -NAA zanedbatelný.

Z porovnání použitelnosti a jednoduchosti přípravy jednotlivých kombinací monitorů je zřejmé, že pro naše účely je nejvhodnější kombinace Au+Mo+Rb jak pro ozařování celým spektrem neutronů, tak pouze epitermálními neutrony. Tato kombinace plně nahradí dosud používanou tradiční monitor složený z Au+Zr. Všechny výsledky referenčních materiálů prezentované v této práci byly získány pomocí kombinace monitorů Au+Mo+Rb. Výsledky získané pomocí dalších testovaných kombinací a Au+Zr byly shodné v rámci nejistot, nejsou však v této práci uváděny. V případě ENAA jsou publikovány výsledky pouze pro prvky, které vytvářejí nuklidy s hodnotou Q_0 větší než 3, u nichž je vliv nedokonalosti ozařovacího Cd-pouzdra již zanedbatelný.

Při každém z ozařování byla analyzována sada SRMs, přičemž shoda výsledků, x_{lab} , s certifikovanými hodnotami, x_{cert} , byla posuzována pomocí kritéria E_n definovaného jako²⁰

$$E_{n} = \frac{|x_{lab} - x_{cert}|}{\sqrt{u_{lab}^{2} + u_{cert}^{2}}}.$$
(2)

Nejistota každého výsledku, u_{lab} , byla vyhodnocena v souladu s mezinárodně uznanými doporučeními^{21, 22}. V metodice Kayzero for Windows software³ se počítá kombinovaná nejistota jako odmocnina součtu kvadrátů standardních nejistot měření a předpokládané systematické nejistoty (3,5 %). Z ní se vypočte rozšířená nejistota vynásobením faktorem rozšíření k=2. Rozšířené nejistoty certifikovaných hodnot byly vzaty z certifikátů u_{cert} (k=2) a pro nejistoty informačních hodnot, které nejsou publikovány, byly pro potřeby této práce použity rozšířené relativní nejistoty 10 % (k=2). Kvalita výsledků pomocí E_n čísla se určuje následovně: $E_n \leq 1 =$ uspokojivý výsledek, $E_n > 1 =$ neuspokojivý výsledek.

Výsledky pro matriční referenční materiály NIST SRM-1547, NIST SRM-1633b a NIST SRM-2711 získané metodou k_0 -NAA jsou uvedeny v Tab. 4-6. Ve většině případů byly tyto výsledky v dobré shodě s certifikovanými hodnotami ($E_n \le 1$). Bylo pozorováno pouze několik nesrovnalostí ($E_n > 1$), které lze vysvětlil následovně: hodnoty E_n pro Cr a Sb NIST SRM-1547 jsou vysoké v důsledku příliš nízkých nejistot použitých pro tyto necertifikované prvky. Vyšší hodnota Na než je uvedeno v certifikátu je konzistentní s našimi předešlými výsledky i výsledky z dalších laboratoří. Studium této nekonzistence stále probíhá⁹⁻¹¹. Nižší stanovená koncentrace Se v NIST SRM-2711 je pravděpodobně důsledkem nesprávně vyřešené spektrální interference, zatímco vysvětlení nižší hodnoty Cd v tomto SRM stanovené metodou ENAA zůstává neznámé. Hodnoty $E_n > 1$ pro necertifikované obsahy prvků Sb a Sm v NIST SRM-1633b lze vysvětlit podobně jako v případě Cr a Sb v NIST SRM-1547, tj. nesprávně nastavenými nejistotami necertifikovaných hodnot. Žádná z nalezených nesrovnalostí však nemá systematický charakter.

SRM-1547	NIST ^a	H6 (INAA)		H6 (ENAA)		H8 (INAA)	
Prvek, jednotka	$x_{cert} \pm u_{cert}$	$x_{lab} \pm u_{lab}$	En	$x_{lab} \pm u_{lab}$	En	$x_{lab} \pm u_{lab}$	En
As, mg kg ⁻¹	$0,060 \pm 0,018$	< 0,5	-	< 0,5	-	$0,\!086\pm0,\!019$	0,99
Ba, mg kg ⁻¹	124 ± 4	114 ± 15	0,64	-	-	116 ± 8	0,89
Br, mg kg ⁻¹	(11)	$11,1 \pm 0,8$	0,07	$10,5 \pm 0,7$	0,38	$10,8 \pm 0,8$	0,15
Ca, %	$1,56 \pm 0,02$	$1,61 \pm 0,16$	0,34	-	-	$1,57 \pm 0,12$	0,08
Cd, mg kg ⁻¹	$0,026 \pm 0,003$	< 0,8	-	< 0,6	-	< 0,5	-
Ce, mg kg ⁻¹	(10)	$10,9 \pm 0,8$	0,70	-	-	$10,6 \pm 0,8$	0,47
Co, mg kg ⁻¹	(0,07)	$0,072 \pm 0,007$	0,20	-	-	$0,073 \pm 0,006$	0,33
Cr, mg kg ⁻¹	(1)	$1,40 \pm 0,14$	2,32	-	-	$1,38 \pm 0,12$	2,43
Cu, mg kg ⁻¹	$3,7 \pm 0,4$	< 160	-	-	-	< 150	-
Eu, mg kg ⁻¹	(0,17)	$0,19 \pm 0,02$	0,76	$0,18 \pm 0,05$	0,19	$0,184 \pm 0,017$	0,58
Fe, mg kg ⁻¹	218 ± 14	218 ± 16	0,00	-	-	212 ± 15	0,29
Gd, mg kg ⁻¹	$d, mg kg^{-1}$ (1)		-	< 4	-	< 2	-
K, %	$2,43 \pm 0,03$	$2,34 \pm 0,17$	0,52	-	-	$2,30 \pm 0,16$	0,80
La, mg kg ⁻¹	(9)	$9,3 \pm 0,7$	0,26	-	-	9,1 ± 0,6	0,09
Mo, mg kg ⁻¹	$0,060 \pm 0,008$	< 0,6	-	< 0,3	-	< 0,12	-
Na, mg kg ⁻¹	24 ± 2	44 ± 3	5,55	-	-	40 ± 3	4,44
Nd, mg kg ⁻¹	(7)	$7,6 \pm 0,9$	0,53	-	-	$6,9 \pm 0,5$	0,12
Rb, mg kg ⁻¹	$19,7 \pm 1,2$	$19,3 \pm 1,4$	0,22	$18,7 \pm 1,7$	0,48	$19,0 \pm 1,4$	0,38
Sb, mg kg ⁻¹	(0,02)	$0,052 \pm 0,007$	4,40	$0,059 \pm 0,006$	6,17	$0,044 \pm 0,005$	4,46
Sc, mg kg ⁻¹	(0,04)	$0,045 \pm 0,004$	0,88	-	-	$0,044 \pm 0,003$	0,80
Se, mg kg ⁻¹	$0,120 \pm 0,009$	< 0,15	-	< 0,13	-	< 0,2	-
Sm, mg kg ⁻¹	(1)	$1,11 \pm 0,09$	0,82	$1,08 \pm 0,09$	0,59	$1,06 \pm 0,08$	0,47
Sr, mg kg ⁻¹	53 ± 4	60 ± 6	0,97	59 ± 6	0,83	57 ± 5	0,62
Tb, mg kg ⁻¹	(0,1)	$0,111 \pm 0,009$	0,82	$0,108 \pm 0,008$	0,62	$0,106 \pm 0,008$	0,47
Th, mg kg ⁻¹	(0,05)	$0,058 \pm 0,009$	0,78	$0,059 \pm 0,014$	0,61	$0,057 \pm 0,007$	0,81
U, mg kg ⁻¹	(0,015)	< 0,05	-	< 0,03	-	< 0,04	-
Yb, mg kg ⁻¹	(0,2)	$0,18 \pm 0,03$	0,55	-	-	$0,176 \pm 0,016$	0,94
Zn, mg kg ⁻¹	$17,9 \pm 0,4$	$18,4 \pm 1,3$	0,37	-	-	$18,0 \pm 1,3$	0,07

Tab 4 Výsledky pro NIST SRM-1547 Peach Leaves

^a – necertifikované hodnoty udané bez nejistot jsou v závorkách.

SRM-2711	NIST ^a	H6 (INAA)		H6 (ENAA)		H8 (INAA)	
Prvek, Jednotka	$x_{cert} \pm u_{cert}$	$x_{lab} \pm u_{lab}$	En	$x_{lab} \pm u_{lab}$	En	$x_{lab} \pm u_{lab}$	En
Ag, mg·kg ⁻¹	4,63 ± 0,39	$4,7 \pm 0,5$	0,11	$4,6 \pm 0,3$	0,06	$4,8 \pm 0,4$	0,30
As, mg·kg ⁻¹	105 ± 8	108 ± 8	0,27	96 ± 6	0,90	101 ± 7	0,38
Au, mg·kg ⁻¹	(0,03)	$0,022 \pm 0,008$	0,94	$0,032 \pm 0,003$	0,47	$0,032 \pm 0,007$	0,26
Ba, mg⋅kg ⁻¹	726 ± 38	700 ± 50	0,41	-	-	680 ± 50	0,73
Br, mg·kg ⁻¹	(5)	$5,0 \pm 0,5$	0,00	$5,39 \pm 0,11$	0,76	$5,0 \pm 0,5$	0,00
Ca, %	$2,\!88 \pm 0,\!08$	< 3	-	-	-	< 4	-
Cd, mg·kg ⁻¹	$41,70 \pm 0,25$	41 ± 6	0,12	$23,0 \pm 1,9$	9,76	38 ± 7	0,53
Ce, mg·kg ⁻¹	(69)	77 ± 5	0,94	-	-	76 ± 5	0,82
Co, mg·kg ⁻¹	(10)	$10,4 \pm 0,7$	0,33	-	-	$9,8 \pm 0,7$	0,16
Cr, mg·kg ⁻¹	(47)	49 ± 4	0,32	-	-	48 ± 3	0,18
Cs, mg·kg ⁻¹	(6,1)	$7,1 \pm 0,8$	0,99	$6,0 \pm 0,4$	0,14	$6,6 \pm 0,5$	0,63
Cu, mg·kg ⁻¹	114 ± 2	< 3000	-	-	-	< 900	-
Eu, mg·kg ⁻¹	(1,1)	$1,21 \pm 0,17$	0,54	$1,2 \pm 0,2$	0,44	$1,20 \pm 0,13$	0,59
Fe, %	$2,89 \pm 0,06$	$2,9 \pm 0,2$	0,05	-	-	$2,9 \pm 0,2$	0,05
Ga, mg·kg ⁻¹	(15)	< 110	-	< 30	-	< 150	-
Hf, mg∙kg⁻¹	(7,3)	$8,2 \pm 0,7$	0,89	$6,2 \pm 1,1$	0,83	$8,3 \pm 0,7$	0,99
Ho, mg·kg ⁻¹	(1)	< 8	-	< 2	-	< 6	-
In, mg·kg ⁻¹	(1,1)	< 3	-	< 1,8	-	< 1,7	-
K, %	$2,45 \pm 0,08$	$2,44 \pm 0,18$	0,05	-	-	$2,34 \pm 0,17$	0,59
La, mg·kg ⁻¹	(40)	37 ± 3	0,60	-	-	36 ± 3	0,80
Mo, mg·kg ⁻¹	(1,6)	< 10	-	< 2	-	< 12	-
Na, mg·kg ⁻¹	$1,14 \pm 0,03$	$1,21 \pm 0,08$	0,82	-	-	$1,15 \pm 0,08$	0,12
Nd, mg·kg ⁻¹	(31)	33 ± 3	0,46	-	-	32 ± 3	0,23
Rb, mg·kg ⁻¹	(110)	121 ± 9	0,77	97 ± 9	0,91	117 ± 8	0,88
Sb, mg·kg ⁻¹	$19,4 \pm 1,8$	$20,5 \pm 1,5$	0,47	$17,5 \pm 1,1$	0,90	$19,4 \pm 1,4$	0,00
Sc, mg·kg ⁻¹	(9)	$9,8 \pm 0,7$	0,70	-	-	$9,4 \pm 0,7$	0,35
Se, mg·kg ⁻¹	$1,52 \pm 0,14$	$1,23 \pm 0,12$	1,57	$1,0 \pm 0,2$	2,13	$1,1 \pm 0,2$	1,72
Sm, mg·kg ⁻¹	(5,9)	$5,7 \pm 0,4$	0,28	$5,4 \pm 0,3$	0,76	$5,3 \pm 0,4$	0,84
Sr, mg·kg ⁻¹	$245,3 \pm 0,7$	280 ± 40	0,87	240 ± 30	0,18	270 ± 30	0,82
Th, mg·kg ⁻¹	(14)	$14,7 \pm 1,0$	0,41	$13,3 \pm 0,8$	0,43	$14,8 \pm 1,0$	0,46
U, mg·kg ⁻¹	(2,6)	$2,6 \pm 0,3$	0,00	$2,50 \pm 0,18$	0,32	$3,0 \pm 0,7$	0,54
W, mg·kg ⁻¹	(3)	$3,4 \pm 0,7$	0,53	$2,7 \pm 0,2$	0,83	$3,2 \pm 0,4$	0,40
Yb, mg·kg ⁻¹	(2,7)	$3,1 \pm 0,4$	0,83	-	-	$3,0 \pm 0,4$	0,62
Zn, mg·kg ⁻¹	$350,4 \pm 4,8$	360 ± 30	0,32	-	-	350 ± 20	0,02
Zr, mg·kg ⁻¹	(230)	< 400	-	< 400	-	< 400	-

Tab 5 Výsledky pro NIST SRM-2711 Montana Soil

^a – necertifikované hodnoty udané bez nejistot jsou v závorkách.

Závěry

Byla testována správnost výsledků získaných metodou k_0 -NAA s novou kombinací monitorů parametrů neutronového toku Au+Mo+Rb(+Zn) pro dlouhodobé ozařování v reaktoru LVR-15 v Řeži. Při porovnání hodnot parametrů neutronového toku f, α a F_c získaných s původním souborem monitorů Au+Zr a novou kombinací nebyly nalezeny žádné systematické rozdíly pro ozařování v celém neutronovém spektru. V případě ENAA byl monitor ⁶⁵Zn vyhodnocen jako nevhodný, vzhledem ke své nižší hodnotě Q_0 a konstrukci ozařovacího pouzdra pro z Cd. Rozdíly v hodnotách α mají zanedbatelný vliv na výsledky vzhledem, k blízkosti α k nule ve

všech ozařovacích kanálech reaktoru LVR-15. Dokládají to výsledky analýz tří matričních referenčních materiálů NIST SRMs, jenž byly v naprosté většině případů v dobré shodě s certifikovanými hodnotami. Tato studie potvrzuje, že při dlouhodobém ozařování v reaktoru LVR-15 je pro stanovování parametrů neutronového toku α , f a F_c s nejvhodnější kombinace monitorů složená z Au+Mo+Rb.

SRM-1633B	NIST ^a	H6 (INAA)		H6 (ENAA)		H8 (INAA)	
Prvek, Jednotka	$x_{cert} \pm u_{cert}$	$x_{lab} \pm u_{lab}$	$x_{lab} \pm u_{lab}$ $\mathbf{E}_{\mathbf{n}}$ $x_{lab} \pm u_{lab}$ $\mathbf{E}_{\mathbf{n}}$ $x_{lab} \pm u_{lab}$		$x_{lab} \pm u_{lab}$	En	
As, mg·kg ⁻¹	$136,2 \pm 2,6$	132 ± 9	0,45	137 ± 10	0,08	130 ± 9	0,66
Ba, mg·kg ⁻¹	709 ± 27	740 ± 150	0,20	-	-	710 ± 80	0,01
Br, mg·kg ⁻¹	(2,9)	$3,2 \pm 0,4$	0,61	$2{,}76\pm0{,}14$	0,43	$3,2 \pm 0,3$	0,72
Ca, %	$1,51 \pm 0,06$	< 3	-	-	-	< 3	-
Cd, mg·kg ⁻¹	$0,784 \pm 0,006$	< 12	-	< 3	-	< 11	-
Ce, mg·kg ⁻¹	(190)	196 ± 14	0,25	-	-	193 ± 14	0,13
Co, mg·kg ⁻¹	(50)	51 ± 4	0,16	-	-	49 ± 4	0,16
Cr, mg·kg ⁻¹	$198,2 \pm 4,7$	212 ± 15	0,88	-	-	208 ± 15	0,62
Cs, mg·kg ⁻¹	(11)	$11,0 \pm 0,8$	0,00	$12,4 \pm 0,9$	0,99	$10,6 \pm 0,8$	0,29
Cu, mg·kg ⁻¹	$112,8 \pm 2,6$	< 2000	-	-	-	< 700	-
Eu, mg·kg ⁻¹	(4,1)	$4,0 \pm 0,4$	0,17	$4,2 \pm 0,4$	0,17	$4,0 \pm 0,3$	0,20
Fe, %	$7,78 \pm 0,23$	$8,0 \pm 0,6$	0,34	-	-	$7,7 \pm 0,5$	0,15
Gd, mg·kg ⁻¹	(13)	< 100	-	< 40	-	< 90	-
Hf, mg∙kg⁻¹	(6,8)	$6,9 \pm 0,6$	0,11	-	-	$6,9 \pm 0,5$	0,12
Ho, mg·kg ⁻¹	(3,5)	< 7	-	< 8	-	< 5	-
K, %	$1,95 \pm 0,03$	$1,90 \pm 0,14$	0,35	-	-	$1,86 \pm 0,13$	0,67
La, mg·kg ⁻¹	(94)	86 ± 6	0,72	-	-	84 ± 6	0,90
Na, %	$0,201 \pm 0,003$	$0,207 \pm 0,014$	0,42	-	-	$0,200 \pm 0,014$	0,07
Nd, mg·kg ⁻¹	(85)	90 ± 8	0,43	-	-	87 ± 6	0,19
Rb, mg·kg ⁻¹	(140)	147 ± 13	0,37	147 ± 11	0,39	148 ± 11	0,45
Sb, mg·kg ⁻¹	(6)	$5,0 \pm 0,4$	1,39	5,1 ± 0,4	1,25	$5,0 \pm 0,4$	1,39
Sc, mg·kg ⁻¹	(41)	42 ± 3	0,20	-	-	42 ± 3	0,20
Se, mg·kg ⁻¹	$10,26 \pm 0,17$	$10,2 \pm 0,8$	0,07	9,3 ± 1,0	0,95	$9,9 \pm 0,8$	0,44
Sm, mg·kg ⁻¹	(20)	$17,0 \pm 1,2$	1,29	$17,5 \pm 1,3$	1,05	$17,1 \pm 1,2$	1,24
Sr, mg·kg ⁻¹	1041 ± 14	1100 ± 90	0,64	1080 ± 100	0,38	1090 ± 90	0,53
Ta, mg∙kg⁻¹	(1,8)	$1,76 \pm 0,14$	0,18	$1,84 \pm 0,13$	0,18	$1,72 \pm 0,13$	0,36
Tb, mg·kg ⁻¹	(2,6)	$2,63 \pm 0,19$	0,09	$2,7 \pm 0,2$	0,30	$2,66 \pm 0,19$	0,19
Th, mg·kg ⁻¹	$25,7 \pm 1,3$	$26,4 \pm 1,8$	0,32	$27,4 \pm 1,9$	0,74	$26,1 \pm 1,8$	0,18
Tm, mg·kg ⁻¹	(2,1)	< 7	-	< 3	-	< 7	-
U, mg·kg ⁻¹	$8,79 \pm 0,36$	$9,0 \pm 0,8$	0,24	$8,9 \pm 0,6$	0,16	$8,5 \pm 0,7$	0,37
W, mg·kg ⁻¹	(5,6)	$5,5 \pm 0,6$	0,12	$5,0 \pm 0,4$	0,87	$5,5 \pm 0,5$	0,13
Yb, mg·kg ⁻¹	(7,6)	$7,9 \pm 0,6$	0,31	-	-	$8,0 \pm 0,6$	0,41
Zn, mg·kg ⁻¹	(210)	217 ± 16	0,27	-	-	213 ± 15	0,12

Tab 6 Výsledky pro NIST SRM 1633b Constituent Elements in Coal Fly Ash

^a – necertifikované hodnoty udané bez nejistot jsou v závorkách.

Tato práce byla podpořena projektem GAČR P108/12/G108. Ozařování v reaktoru LVR-15 bylo provedeno v rámci infrastruktury CANAM v ÚJF AVČR (projekt MŠMT LM2011019).

- 1. De Corte F, Simonits A (1994) Vademecum for k_0 users. DSM Research, Geleen, The Netherlands.
- 2. Kayzero (2005) Kayzero for Windows, Version 2, User's Manual November 2005, http://www.kayzero.com/KfW%20Manual%20V1.pdf
- 3. De Corte F (1987) The k_0 -standardization method. A move to the optimization of neutron activation analysis. University of Gent, Belgium.
- 4. Koster-Ammerlaan MJJ, Bacchi MA, Bode P, De Nadai Fernandes EA (2008) Appl Rad Isotopes 66:1964-1969.
- 5. Khoo KS, Sarmani SB, Tan CH, Ti KL (2007) Variation of neutron parameters and neutron flux in an irradiation container at selected irradiation channels by using two neutron flux monitoring sets based on k₀-NAA method. Proceedings of the 12th Int. Conference on Modern Trends in Activation Analysis (MTAA-12), September 16-21, 2007, Tokyo Metropolitan University, Hachioji, Japan, p. 124.
- Montoya E, Mendoza P, Bedregal P, Ubillús M, Torres B, Cohen IM (2007) The set Au-Zr-Mo-Cr-Lu as multiple reactor flux monitor. The performance of ⁹⁶Zr and the analysis of inconsistencies. Informe Científico Tecnológico (ICT) and Instituto Peruano de Energía Nuclear (IPEN), Lima, Perú, p. 15-19, ISSN 1684-1662.
- 7. Kubešová M, Kučera J (2010) Chem Listy 105:261-268 (in Czech).
- 8. Kubešová M, Kučera J (2010) Nucl Instrum Methods A 622:403-406.
- 9. Kubešová M, Kučera J (2011) Nucl Instrum Methods A 654:206-212.
- 10. Kubešová M, Kučera J, Fikrle M (2011) Nucl Instrum Methods A 656:61-64.
- 11. Kubešová M, Kučera J (2012) J Radioanal Nucl Chem 293:665-674.
- 12. Koster-Ammerlaan MJJ, Bode P, Winkelman AJM (2012) J Radioanal Nucl Chem 291:569-572.
- 13. Ingelbrecht C, Peetermans F, De Corte F, De Wispelaere A, Vandercasteele C, Courtijn E, D'Hondt P (1991) Nucl Instrum Methods A 303:119-122.
- 14. *k*₀-database (2012) http://www.kayzero.com/k0naa/k0naa/News/Entries/2012/3/25_The_IUPAC_databasa.html.
- 15. NIST Certificates of Analysis, http://ts.nist.gov/measurementservices/referencematerials/index.cfm.
- 16. IRMM Certificate of Analysis, http://irmm.jrc.ec.europa.eu/Pages/rmcatalogue.aspx.
- 17. Goodfellow, Certificate of Analysis, http://www.goodfellow.com
- 18. Kučera J (1979) Radiochem Radioanal Letters 38:229-246.
- 19. Kubešová M, Kučera J (2012) J Radioanal Nucl Chem 293:87-94.
- 20. ISO Guide 13528 (2005) Statistical methods for use in proficiency testing by interlaboratory comparisons. ISO Geneva, Switzerland.
- 21. EURACHEM/CITAC Guide CG 4 (2000) Quantifying Uncertainty in Analytical Measurement, Second Edition.
- 22. ISO/IEC Guide 98 (1995) Guide to the expression of uncertainty in measurement. ISO Geneva, Switzerland.

Verification of k_0 -NAA results at the LVR-15 reactor in Řež with the use of Au+Mo+Rb(+Zn) monitor set

Marie Kubešová, Ivana Krausová, Jan Kučera

Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež

Long-time experience in neutron flux monitoring on irradiation in the LVR-15 research reactor in Řež proved that Au+Mn+Rb and Au+Mo+Rb(+Zn) monitor sets for short and long irradiation, respectively, are more suitable in our conditions than the most frequently used Au+Zr set. The advantages of the former monitor set have been described previously, in the present work we discuss the advantages of the latter monitor set for long irradiations in varying active core configurations of the LVR-15 reactor. The successful application of the Au+Mo+Rb(+Zn) monitor set has been verified by comparative determination of the neutron flux parameters α , *f*, and F_c using this and the Au+Zr monitor set, and by analyses of certified reference materials, namely NIST SRMs 1547 Apple leaves, 2711 Montana Soil, and 1633b Trace Elements in Coal Fly Ash.