

METHODOLOGY TO ENHANCE NEGATIVE REACTIVITYT. Sathiyasheela, G. S. Srinivasan, K. Devan, S.C.ChetalIndira Gandhi Centre for Atomic ResearchINDIA

- Negative reactivity feedbacks are essential for inherent safety of reactors along with engineered safety.
- There has been continuous attempt to enhance negative reactivity feedbacks in the reactor core to ensure enhanced safety.
- \bullet Higher magnitude of negative reactivity does not necessarily ensure safe shutdown in all accidents.
- \bullet Effort was made to find out the methodologies to enhance the negative reactivity which will be effective in Unprotected Lossof Flow (ULOF) and Unprotected Transient over Power(UTOP) transients.

Contents

- \bullet Overview of Liquid Metal Fast Breeder Reactor (LMFBR) Accidents.
- \bullet Components of Reactivity Feedbacks.
- \bullet Analogy of Reactivity Feedbacks.
- \bullet Methodology to Enhance Negative Reactivity in LMFBR.
- \bullet **Discussions**

Overview of (LMFBR) Accidents.

- Design Basis Events.
- Unprotected Transients-
	- \ast Unprotected Transient Over Power Accidents.
	- *Unprotected Loss of Flow Accidents.
- How Unprotected Accidents are mitigated.

Components of Reactivity Feedbacks

- ❖ Fuel Doppler Feedback .
- $\frac{1}{2}$ Coolant Density.
- ❖ Fuel Axial Expansion.
- $\frac{1}{2}$ Core Radial Expansion.
- $\frac{1}{2}$ Control Rod Drive Line Expansion.
- ❖ Vessel Expansion.
- ❖ Fuel Extrusion.

Fuel Doppler

- Fuel Doppler Feedback **.**
	- ❖ Increase in fuel temperature – Increase in Neutron absorption – Negative Reactivity.
	- ❖ Decrease in fuel temperature – Decrease in Neutron absorption – Positive Reactivity.
- Doppler co-efficient –Spectrum Dependent.
- Doppler feedback Thermal Conductivity.

Coolant Density

- Increment in coolant temperature reduces coolant density.
- Reduction in coolant density harden the neutron spectrum.
- Reactivity effect-
	- Core Centre - Positive due to Spectral Hardening.
	- * Core Boundaries - Negative due to Leakage.
- Large commercial reactor Positive Feedback.
- Height to Diameter- Negative Feedback.

Fuel Axial Expansion

- Fuel Axial Expansion,
	- ❖ Increment in fuel temperature.
	- ❖ Free Fuel axial Expansion - gap open.
	- ❖ Bound Fuel axial Expansion fuel - gap closed.
- Reactivity Effect
	- ❖ Negative- Axial Expansion.
	- ❖ Positive - Fuel Contraction.

Core Radial Expansion

- Increment in inlet coolant temperature-
	- -Grid Plate Expansion.
- Increment in coolant temperature
	- $\mathcal{L}_{\mathcal{A}}$ Flowering of Sub-assemblies.
- Reactivity Effect- Negative
	- ❖ Neutron Leakage.
	- ❖ Core Boundary movement.

Control Rod Drive Line Expansion

- Increment in coolant outlet temperature.
- Relative motion between core and control rod drive line.
- Apparent Insertion of Control Rods.
- Reactivity Effect Negative.

Fuel Extrusion

- Experimental results available in the literature.
- Transients progress beyond fuel melt may drive the fuel in the upward direction with the contribution offission gas pressure.
- If only, there is path available to the fission gas plenum.
- Displacement of the fuel from the higher core mid plane introduce negative reactivity.

ULOF Transient Sequence

- Flow decreases.
- \bullet Coolant temperature increases.
- \bullet Coolant Expansion feedback +ve
- \bullet Radial Expansion Feedback –ve.
- Net Reactivity –ve.
- Power decreases.
- Fuel temperature decreases (oxide)/ increases (metal)
- \bullet Doppler feedback Positive (oxide)/ Negative or zero (metal)

ULOF – Transient Sequence

- Reduction in reactor flow *f*
- Increase in p/f ratio
- p / f increase, core temperature increases inducing negative reactivity*p*/*f*
- Positive reactivity of power reduction balanced by the negative reactivity of core heat up by ratio*p*/*f*

Reactivity Balance

$$
\delta \rho = (p-1)A + (p/f-1)B + C \delta T_i + \Delta \rho_{ext} = 0
$$

$$
p/f = 1 + \frac{A}{B}, \qquad \delta T_{out} = (A/f) \Delta T_c
$$

Inherent safety is promoted, when

- A Small
- B Large

 $A/B \leq 1$

UTOP-Transient Sequence

- Single rod withdrawal positive reactivity Δρ P TOP
- No change in coolant flow
- No change in inlet coolant temp
- External positive reactivity is compensated by power increase negative reactivity
- p / f ratio increases
- p / f ratio increase causes T_{out} increase *f* ratio increase causes T_{out}

UTOP-Reactivity Balance

 $\delta \rho = (p-1)A + (p/f-1)B + C\delta T_i + \Delta \rho_{ext} = 0$ $-1)B + C\delta\Gamma_{i} + \Delta\rho_{ext}$ =

$$
f = 1
$$

\n
$$
P = 1 - \frac{\Delta \rho_{\text{top}}}{(A + B)}
$$

\n
$$
\delta T_{\text{out}} = \left(\delta \left(\frac{p}{f}\right)\right) \Delta T_{\text{c}}
$$

\n
$$
\delta T_{\text{out}} = -\frac{\Delta \rho_{\text{top}}}{(A + B)} \Delta T_{\text{c}}
$$

Inherent Safety

• $ULOF$ A - Small, $A/B \leq 1$ B - Large

• UTOP A+B - Large
$$
\frac{\Delta \rho_{\text{top}}}{|A+B|} \le 1
$$

Inherent Safety Parameters

$$
A = \left\{\!\!\left[\frac{\delta \rho_D}{\delta T} \!+\! \Delta k_f^{j,i} \alpha_f + \Delta z \alpha_f C^i \right]\!\!\left(\frac{1}{h_{sc}} \!+\! \frac{1}{h_{fs}}\right) \!\!+\! \Delta k_s^{j,i} \alpha_s \frac{1}{h_{sc}}\right\} \!\! q^{j,i}
$$

$$
B = \left[\frac{\delta \rho_D}{\delta T} + \Delta k_f^{j,i} \alpha_f + \Delta z \alpha_f C^i + \Delta k_s^{j,i} \alpha_s + 3 \Delta \underline{\mathcal{X}}^i \alpha_{Na} \right] \sum_{k=1}^j \frac{\Delta z}{C_c \rho A_f} \frac{q^{k,i}}{v(i)}
$$

+
$$
\left[2 \alpha_s \Delta k_f^{j,i} W^j + 2 \alpha_s \Delta k_s^{j,i} W^j + 2 R_1 (R^{i+1} - R^i) \alpha_s W^j \frac{E_j}{2R_1 + 1} \right] \sum_{k=1}^{jsp} \frac{\Delta z}{C_c \rho A_f} \frac{q^{k,i}}{v(i)}
$$

+
$$
2 R_c (R^{i+1} - R^i) \alpha_s W^j \frac{D_j}{2R_c + 1}
$$

Co-efficient A

- Doppler Worth.
- Fuel & clad removal worth.
- Axial boundary movement worth.
- Linear Power.
- Linear expansion co-efficient of fuel and steel
- Effective heat transfer.

Co-efficient B

- Doppler Worth.
- Fuel & clad removal worth.
- Linear Power to flow ratio.
- Linear expansion co-efficient of fuel and steel
- Bulk coolant expansion.
- Effective heat transfer.
- Axial boundary movement worth.
- Fuel axial and radial boundary movement worth.

Enhance Inherent Safety

- Doppler Reactivity ????
- Linear expansion co-efficient of fuel ????
- Effective heat transfer-Good
- > High fuel thermal conductivity.
- Better gap conductance.
- Enhancing negative reactivity through axial and radial boundary movement.
- Fixing the boundary worth difference appropriately.
- Decrease the gap between spacer pads.

- Enhance the flowering effect.

Perturbation Worth of 500 MWe LMFBR

The Isothermal Temperature ReactivityCoefficients of 500 MWe LMFBR

Static Power coefficients of 500 MWe LMFBR(Averaged over Zero to Full Power)

Power Reactivity Decrement of 500 MWe LMFBR(Averaged over Zero to Full Power)

UTOPA- Oxide fuel-PFBR

Temperatures of PFBR (ULOF analysis)

Technical Meeting on Innovative Fast Reactor Designs with Enhanced Negative Reactivity Feedback Features27

ULOFA- Oxide fuel-PFBR

Technical Meeting on Innovative Fast Reactor Designs with Enhanced Negative Reactivity Feedback Features28

Feedback reactivity of 500 MWe MFBR (ULOF)

Technical Meeting on Innovative Fast Reactor Designs with Enhanced Negative Reactivity Feedback Features

29

Feedback Reactivity – Analogy

• Prompt Doppler is good, provided available during both ULOFA and UTOPA.

- Increasing conductivity of the fuel.

- Methodology may be explored to increase the Doppler in metal fuel.
	- Addition of moderating material to soften the spectrum.
- \bullet Enhance negative reactivity through core radial expansion. -Decrease the gap between spacer pads.-Enhance the radial boundary movement contribution.

Enhancing negative Doppler

- \bullet Addition of moderating material in metal fuel reactors.
- \bullet • Soften the spectrum and improves the Doppler feedback.
- \bullet Addition of diluents in coolant or replacing some fuel ^pins with pins having moderating properties.
- \bullet • Replacing some fuel pins with ZrH – Literature Tsujimoto, K. et al, Annals of Nuclear Energy, V 28, P 831-855.
- \bullet Experiments conducted in FCA of JAERI shows hydrogenous material significantly improves the Doppler and sodium void reactivities.

Increasing Thermal conductivity of fuel

- \bullet This argument is more relevant to metallic fuel.
- \bullet Lower operating temperature, small rise in temperature during transient
- \bullet Reduced excess reactivity. Severity of the UTOP is reduced
- \bullet Thermal conductivity is enhanced by suitable alloying material.
- \bullet Expansion co-efficient of U-Pu-Al is good.(Ishizu, T.,et al, 2010, Journal of nuclear science and technology, Vol.47, P. 684.).
- \bullet Fuel axial expansion feedback expected to give negative reactivity contribution during ULOFA.

Decrease gap between spacer pads

- \bullet Delayed feedback, effective for both UTOPA and ULOFA .
- \bullet Space between spacer pads are less, gaps would have been closed already during the steady state.
- \bullet Coolant temperature and the adverse effect of positive feedback is more during ULOFA.
- \bullet Flowering of sub-assemblies provide negative reactivity feedback.

Enhancing negative reactivity through axial and radial boundary movement

- \bullet Expansion of inner core into outer core ^gives ^a negative boundary movement reactivity feedback.
- \bullet Outer core into radial blanket ^gives ^a positive boundary movement reactivity feedback.
- \bullet Expansion of core in the axial direction to the lower and upper axial blanket gives ^a positive boundary movement reactivityfeedback.
- \bullet Reduce the positive reactivity feedback by adjusting the worth at the core–blanket boundaries.

Enhancing negative reactivity through axial and radial boundary movement –contd.

- \bullet Reduce the difference in worth at the core–blanket boundaries.
- \bullet Enhance the negative reactivity feedback by adjusting the worth between core-1 and core-2boundaries.
- \bullet Increase the difference in worth between core-1 and core-2 boundaries.

Enhancing negative reactivity through axial and radial boundary movement – contd.

- \bullet Boundary worth adjusted through enrichment.
- \bullet Boundary worth adjusted through enrichment
	- Number of sub-assemblies are increased.
	- \blacktriangleright Enhanced negative reactivity through flowering .
	- Increased axial leakage.
	- Reduced sodium void worth.

Fuel Extrusion-PFBR

Technical Meeting on Innovative Fast Reactor Designs with Enhanced Negative Reactivity Feedback Features37

Discussions and Conclusions

- Metal fuel shows superior inherent passive safety features for both ULOFA and UTOPA.
- Negative Doppler may be enhanced by addition of moderating material in metal fuel reactors to protect thereactor against UTOPA.
- Increase thermal conductivity of fuel by suitable alloy.

Discussions and Conclusions

Better Expansion co-efficient of metal fuel to enhancenegative reactivity.

 Decrease gap between spacer pads to enhance the flowering effect.

 Enhancing negative reactivity through axial and radial boundary movement by adjusting the enrichment.

Thank you