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• Negative reactivity feedbacks are essential for inherent safety of

reactors along with engineered safety.

• There has been continuous attempt to enhance negative  reactivity

feedbacks in the reactor core to ensure enhanced safety.

• Higher magnitude of negative reactivity does not necessarily

ensure safe shutdown in all accidents.

• Effort was made to find out the methodologies to enhance the

negative reactivity which will be effective in Unprotected Loss

of Flow (ULOF) and Unprotected Transient over Power

(UTOP) transients.
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Overview of (LMFBR) Accidents.

• Design Basis Events.

• Unprotected Transients-

* Unprotected Transient Over Power Accidents.

* Unprotected Loss of Flow Accidents.

• How Unprotected Accidents are mitigated.



Technical Meeting on Innovative Fast Reactor Designs with Enhanced Negative Reactivity Feedback Features 5

Components of Reactivity Feedbacks

� Fuel Doppler Feedback .

� Coolant Density.

� Fuel Axial Expansion.

� Core Radial Expansion.

� Control Rod Drive Line Expansion.

� Vessel Expansion.

� Fuel Extrusion.
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Fuel Doppler

• Fuel Doppler Feedback.

� Increase in fuel  temperature – Increase in    

Neutron absorption – Negative Reactivity.

� Decrease in fuel  temperature – Decrease in    

Neutron absorption – Positive Reactivity.

• Doppler co-efficient –Spectrum Dependent.

• Doppler feedback – Thermal Conductivity.
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Coolant Density
• Increment in coolant temperature reduces coolant 

density.

• Reduction in coolant density harden the neutron 
spectrum.

• Reactivity effect-
� Core Centre - Positive due to Spectral 

Hardening.

� Core Boundaries - Negative due  to Leakage.

• Large commercial reactor – Positive Feedback.

• Height to Diameter- Negative Feedback.
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• Fuel Axial Expansion,

� Increment in fuel  temperature.

� Free Fuel axial Expansion - gap open.

� Bound Fuel axial Expansion fuel - gap closed.

• Reactivity Effect

� Negative- Axial Expansion.

� Positive - Fuel Contraction.

Fuel Axial Expansion
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Core Radial Expansion

• Increment in inlet coolant temperature-

- Grid Plate Expansion.

• Increment in coolant temperature

- Flowering of Sub-assemblies.

• Reactivity Effect- Negative

� Neutron Leakage.

� Core Boundary movement.
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Control Rod Drive Line Expansion

• Increment in coolant outlet temperature.

• Relative motion between core and control rod 

drive line.

• Apparent Insertion of Control Rods.

• Reactivity Effect - Negative.
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Fuel Extrusion

• Experimental results available in the literature.

• Transients progress beyond fuel melt may drive the
fuel in the upward direction with the contribution of
fission gas pressure.

• If only, there is path available to the fission gas
plenum.

• Displacement of the fuel fromthe higher core mid
plane introduce negative reactivity.
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ULOF Transient Sequence

• Flow decreases.
• Coolant temperature increases.
• Coolant Expansion feedback +ve
• Radial Expansion  Feedback –ve.
• Net Reactivity –ve.
• Power decreases.
• Fuel temperature decreases (oxide)/

increases (metal)
• Doppler feedback Positive (oxide)/ 

Negative or zero (metal)



Technical Meeting on Innovative Fast Reactor Designs with Enhanced Negative Reactivity Feedback Features 13

ULOF – Transient Sequence

• Reduction in reactor flow 

• Increase in             ratio

• increase, core temperature increases

inducing negative reactivity

• Positive reactivity of power reduction balanced by

the negative reactivity of core heat up by ratio

fp /

f

fp /

fp /
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Reactivity Balance
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UTOP- Transient Sequence

• Single rod withdrawal positive reactivity

• No change in coolant flow

• No change in inlet coolant temp

• External positive reactivity is compensated by power 
increase negative reactivity

• ratio increases

• ratio increase causes        increase

fp /

TOP∆ρ

fp /
outT
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UTOP-Reactivity Balance
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Inherent Safety

• ULOF    A   - Small,

B   - Large

• UTOP    A+B - Large

1A/B ≤

1
BA

∆ρ
TOP ≤

+



Technical Meeting on Innovative Fast Reactor Designs with Enhanced Negative Reactivity Feedback Features 18

Inherent Safety Parameters
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• Doppler Worth.

• Fuel & clad removal worth.

• Axial boundary movement worth.

• Linear Power.

• Linear expansion co-efficient of fuel and steel

• Effective heat transfer.

Co-efficient A
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• Doppler Worth.

• Fuel & clad removal worth.

• Linear Power to flow ratio.

• Linear expansion co-efficient of fuel and steel

• Bulk coolant expansion.

• Effective heat transfer. 

• Axial boundary movement worth.

• Fuel axial and radial boundary movement worth. 

Co-efficient B
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• Doppler Reactivity - ????

• Linear expansion co-efficient of fuel - ????

• Effective heat transfer-Good

�High fuel thermal conductivity.

�Better gap conductance.

• Enhancing negative reactivity through axial and radial 
boundary movement.

�Fixing the boundary worth difference appropriately.

• Decrease the gap between spacer pads.

�Enhance the flowering effect.

Enhance Inherent Safety
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Perturbation Worth of  500 MWe LMFBR

Component Worth (in pcm) -Core only

Oxide Metal 

Fuel worth

Steel worth 

Coolant worth 

Doppler worth

-35776 (100.7 $)

3181 (8.9 $)

620 (1.75 $)

-748 (2.1$)

-38228 (98.5 $)

4190 (10.8 $)

2050 (5.3 $)

-470 (1.2 $)
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The Isothermal Temperature Reactivity
Coefficients of  500 MWe LMFBR

Component
Reactivity Co-efficient 

(pcm/C)

Oxide Metal

Doppler

Fuel Axial expansion

Clad  axial expansion

Coolant expansion

Spacer pad expansion

-0.971

-0.236

0.064

0.177

-0.869

-0.624

-0.504

0.084

0.584

-1.039

Total -1.835 -1.499
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Static Power coefficients of  500 MWe LMFBR
(Averaged over Zero to Full Power)

Reactivity Component Reactivity coefficient 
(pcm/MWt)

Oxide Metal

Doppler

Fuel Axial expansion

Clad & sheath axial expansion

Coolant expansion

Spacer pad expansion

-0.479

-0.161

0.007

0.014

-0.092 

-0.093

-0.079

0.008

0.042

-0.092

Total -0.711 -0.214

Power Reactivity Decrement (pcm) -848.7 -236.1
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Power Reactivity Decrement of 500 MWe LMFBR
(Averaged over Zero to Full Power)

Reactivity Component Reactivity coefficient 
(pcm/MWt)

Oxide Metal

Vested   from the fuel temperature 
rise (A)

Vested   from the coolant 
temperature rise (B)

-694.4

-154.36

-112.0

-124.07

Power Reactivity Decrement 
(A+B)

-848.7 -236.1
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ULOFA - Oxide fuel-PFBR
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• Prompt Doppler is good, provided available during  both 
ULOFA and UTOPA.

� Increasing conductivity of the fuel.

• Methodology may be explored to increase the Doppler in 
metal fuel.

� Addition of moderating material to soften the 
spectrum.

• Enhance negative reactivity through core radial expansion.

�Decrease the gap between spacer pads.

�Enhance the radial boundary movement contribution.

Feedback Reactivity – Analogy
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Enhancing negative Doppler
• Addition of moderating material in metal fuel reactors.

• Soften the spectrumand improves the Doppler feedback.

• Addition of diluents in coolant or replacing some fuel pins with

pins having moderating properties.

• Replacing some fuel pins with ZrH– Literature

Tsujimoto, K. et al, Annals of Nuclear Energy, V 28, P 831-

855.

• Experiments conducted in FCA of JAERI shows hydrogenous 

material significantly improves the Doppler and sodium void 

reactivities.
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Increasing Thermal conductivity of fuel
• This argument is more relevant to metallic fuel.

• Lower operating temperature, small rise in temperature during 

transient

• Reduced excess reactivity. Severity of the UTOP is reduced

• Thermal conductivity is enhanced by suitable alloying material. 

• Expansion co-efficient of U-Pu-Al is good.(Ishizu, T.,et al, 2010, 

Journal of nuclear science and technology, Vol.47, P. 684.).

• Fuel axial expansion feedback expected to give negative 

reactivity contribution during ULOFA.
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Decrease gap between spacer pads

• Delayed feedback, effective for both UTOPA and ULOFA .

• Space between spacer pads are less, gaps would have been 

closed already during the steady state.

• Coolant temperature and the adverse effect of positive 

feedback is more during ULOFA.

• Flowering of sub-assemblies provide negative reactivity 

feedback.



Technical Meeting on Innovative Fast Reactor Designs with Enhanced Negative Reactivity Feedback Features 34

Enhancing negative reactivity through axial 
and radial boundary movement

• Expansion of inner core into outer core gives a negative

boundary movement reactivity feedback.

• Outer core into radial blanket gives a positive boundary

movement reactivity feedback.

• Expansion of core in the axial direction to the lower and upper

axial blanket gives a positive boundary movement reactivity

feedback.

• Reduce the positive reactivity feedback by adjusting the worth

at the core–blanket boundaries.
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Enhancing negative reactivity through axial 
and radial boundary movement–contd.

• Reduce the difference in worth at the core–blanket
boundaries.

• Enhance the negative reactivity feedback by
adjusting the worth between core-1 and core-2
boundaries.

• Increase the difference in worth between core-1 and
core-2 boundaries.
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Enhancing negative reactivity through axial 
and radial boundary movement– contd.

• Boundary worth adjusted through enrichment.

• Boundary worth adjusted through enrichment

� Number of sub-assemblies are increased.

� Enhanced negative reactivity through flowering . 

� Increased axial leakage.

� Reduced sodium void worth.
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Fuel Extrusion-PFBR
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�Metal fuel shows superior inherent passive safety

features for both ULOFAand UTOPA.

�Negative Doppler may be enhanced by addition of

moderating material in metal fuel reactors to protect the

reactor against UTOPA.

� Increase thermal conductivity of fuel by suitable alloy.

Discussions and Conclusions
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�Better Expansion co-efficient of metal fuel to enhance

negative reactivity.

�Decrease gap between spacer pads to enhance the

flowering effect.

�Enhancing negative reactivity through axial and radial

boundary movement by adjusting the enrichment.

Discussions and Conclusions
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Thank you


