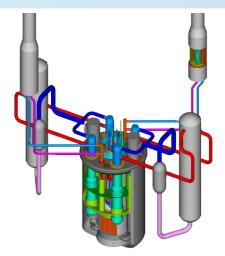
CN\_FR13 Conference, Panel 2, Paris, France, 2013

# (Panel 2) Sustainability of Advanced Fuel Cycles Path towards converging visions of sustainability linking to advanced nuclear fuel cycle


March 05, 2013



# **Geun-IL Park**



Korea Atomic Energy Research Institute



# **Challenging of Nuclear Fuel Cycle**

- A number of challenges to be faced
  - Competitive nuclear energy under the high carbon pricing and financing control
  - A number of challenges to be faced : Requirements
    - Continuous enhancement of safety and security culture
    - Radioactive waste management
    - Nuclear material control
  - Substantial contribution to meet world's energy demand
    - Gen-IV Reactor development and related nuclear fuel cycle technologies
    - Pursued to enhance longer-term sustainability
- Identification of nuclear fuel cycle options
  - Nation's strategies to provide nuclear energy with its various objectives
  - Fuel cycle options that can be best suitable for the country

### **Evaluation of Nuclear Fuel Cycle Options**

- Different fuel cycle options by each country
  - Evaluation of advanced fuel cycle options
    - Sustainability
    - Environmental-friendliness
    - Proliferation-resistance
    - Economics
    - Technologies maturity level
- Common consequence of nuclear fuel cycle options
  - Key evaluation driver of sustainability : Uranium resource
  - Environmental-friendliness : Spent fuel and HLW amount to be disposed
  - Proliferation-resistance : Pu to be disposed

# **Fuel Cycle Schemes**



#### • Once-through Fuel Cycles

- Direct disposal

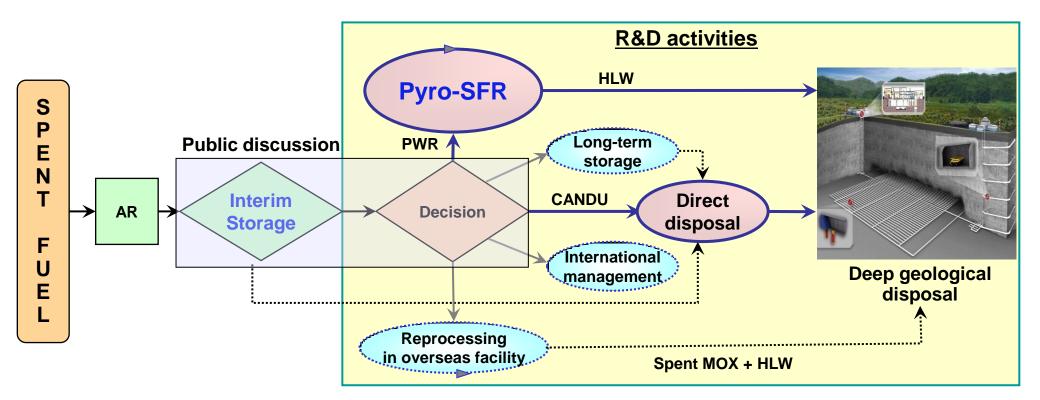
#### - Selection of HLW disposal site will be a critical factor

- Relatively low cost and deep geological repositories have been widely accepted in several countries
- No repositories are yet in operation
- Preferred selection of Low and Intermediate level Waste (LILW) disposal facility

### Closed Fuel Cycles

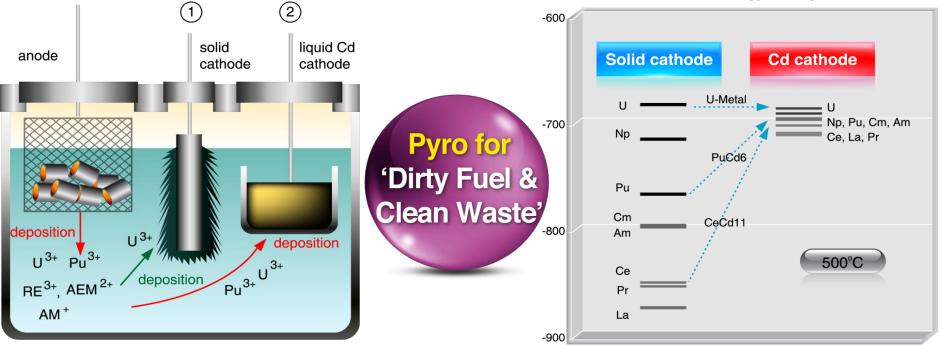
- SF treatment and reuse at SFR reactor
  - Aqueous process : Partially
  - Pyroprocess : Closed
- Proliferation concern has to be resolved

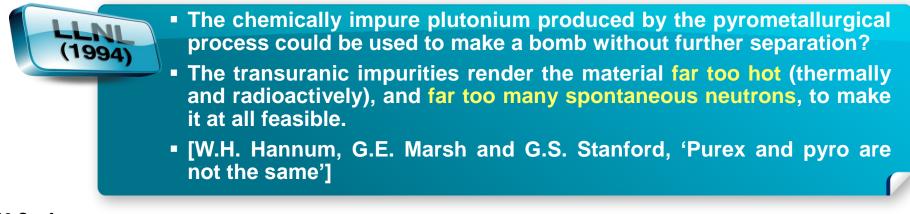
### • Driven by country-specific circumstance


- Nuclear fuel cycle option can't be superior in all aspects of sustainability, waste management, PR and so on
- Comparison of the options : extremely complicated.
- Recognizing selection of nuclear fuel cycle option : Mainly driven by county-specific circumstances that ultimately determine national strategies
- No comparative assessment of such national options has been undertaken.

 Comprehensive standard methodology for objective evaluation of various fuel cycle options

- Provide potential information to policy-decision maker


### **Open Discussions and SF R&D Activities**


- On-site SF storage limit will be reached from 2016
- Spent fuel management policy will be established based on open discussions and public consensus
  - R&D activities to provide technical information for decision making process



# **PR-Oriented Pyroporcessing**

Gibbs Free Energy Change (kJ / mol)





#### Resource utilization

- Increased plant capacity for the next decade continues to add uranium resource and separation work unit demand.
- Prospective increase in the use of reprocessed uranium would have beneficial impact on resource utilization and resource availability

#### • Waste management

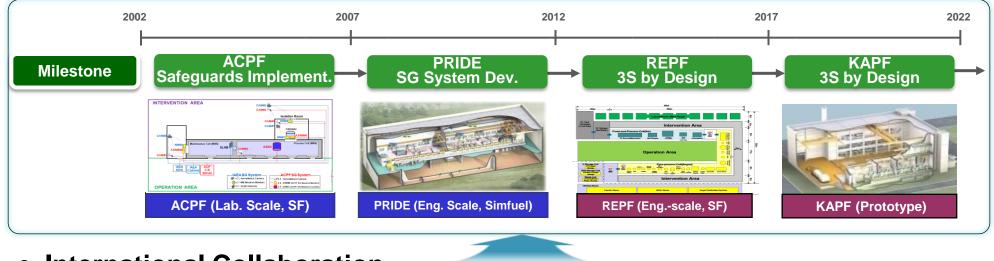
- Reprocessing and recycling technology
  - Lead to reduction of spent fuel inventories and
  - Removal of most of fissile material in the ultimate waste for disposal alleviates the long-term waste burden.
  - Implementation of deep geological disposal remains a key challenge for the industry and for governments

# **Overall Impact Factors on Sustainability (2)**

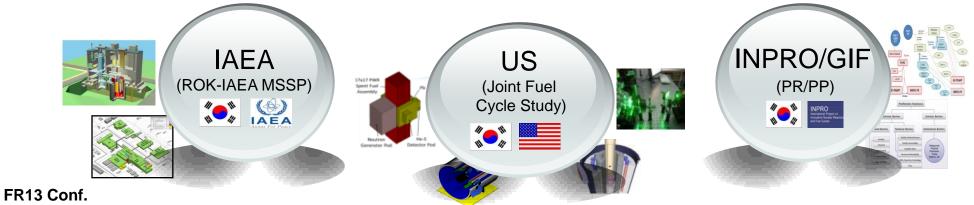
### Proliferation resistance and Physical protection

- Consumption of recycled uranium and TRU reduces potential attractiveness for non-peaceful use.
- Any wider spread of reprocessing or enrichment carries with it proliferation challenges, which continue to be the subject of national and international efforts to enhance the safeguards and non-proliferation regimes

### • Safety


- Reprocessing and recycling technology
  - some relaxation in criticality constraints and safeguards requirements enables by the removal of the majority of the fissile material in the final waste form going to a repository

### Economics


- Major challenge is facing for the reduction of construction time and capital costs for the advanced nuclear fuel cycle

# **Poliferation Resistance R&D (1)**

- Objectives
  - Development of PR/PP enhancement technologies for pyroprocess
  - Development of safeguards technologies
  - Development of hot cell design concept



International Collaboration



# Poliferation Resistance R&D (2)

- Risk of proliferation in any facility that handles nuclear materials
  - A certain level of risk of proliferation in any facility that handles nuclear materials
  - Most intrinsic barriers are ineffective against diversions initiated by states
  - More important question is how to enhance the proliferation resistance of the given process

### • Enhancements of proliferation resistance

- Achieved through application of measures suitably combined to strengthen the material, technological, and institutional barriers to proliferation.
- Development of a "risk reduction methodology" and
- Implementation of a "safeguards-by-design" (SBD) approach

### • A Nuclear material accountancy system

- NDA, DA, C/S

### Summary



### • Evaluation of nuclear fuel cycle options

- Selection of nuclear fuel cycle option is mainly driven by countyspecific circumstances that ultimately determine national strategies
- Comprehensive standard methodology for objective evaluation of various fuel cycle options would provide potential information

### • Pyroprocessing

- KAERI has developed an environment-friendly and proliferation resistant pyroprocessing for spent fuel treatment
- To recover useful materials such as U, TRU, and reduce the volume and radiotoxicity of spent fuel

### • Infrastructure

- Proving transparency and escalating technology improvement in terms of technical, economical and proliferation-resistance aspects