

Progress in Understanding of Fuel-Cladding Chemical interaction in Metal Fuel

OKenta INAGAKI¹, Kinya NAKAMURA¹, and Takanari OGATA¹

¹Central Research Institute of Electric Power Industry (CRIEPI)

2013/03/05 FR13 at Paris, FRANCE

Introduction

U-Pu-Zr alloy is a candidate for the metallic fuel for Fast Reactor.

FCCI(Fuel-Cladding Chemical Interaction)
Reaction occurs between cladding and FPs or fuel matrix.

- FPs and cladding
 - The reaction of lanthanide elements is dominant among other FPs.
 - During normal operation temperature lower than 923K.
- Fuel alloy (U-Pu-Zr) and cladding
 - Liquefaction can occur at transient period.
 - Its threshold temperature depends on the Pu concentration.

Purpose

Out-of-pile diffusion couple tests were conducted to investigate the characteristics of the reactions.

- Lanthanide alloy / several cladding materials
 - Identify the phases formed in the reaction
 - Investigate the influence of the alloying elements in the cladding materials

Formulate the growth rate of the wastage layer formed in the cladding

side

- Identify the phases formed in the reaction
- Estimate the threshold temperature for the liquefaction in lower Pu region

Summary of liquefaction data in the reaction between U-Pu(-Zr) alloy with Fe-based alloys*

Experimental procedure

- Diffusion couples
 - 1 Lanthanide alloy / cladding
 - ② U-Pu-Zr alloy / Fe
- The reaction layer was examined by X-ray spectrometry.

Tantalum of 20 μ m thickness Configuration of the diffusion couple

After the isothermal annealing

Examination of the reaction layer in the specimens

Reaction between Lanthanide alloy (La-Ce-Nd-Pr-Sm) and cladding

Tests of the lanthanide / cladding couples

Summary of test conditions for lanthanide alloy with cladding materials

Combination of the	Temperature	Time	Remarks of cladding
diffusion couple	[K]	[hours]	
RE5 / ODS-steel	853, 923	12-170	Candidate cladding material in Japan
RE5 / PNC-FMS	853, 892, 923	12-170	Candidate cladding material in Japan
RE5 / HT9	853	162	Candidate cladding material in U.S.
RE5 / Fe-12wt%Cr	923	12	Simulating alloy for cladding materials

RE5: 13La -24Ce -12Pr -39Nd -12Sm | wt.%

- Tests were conducted between 853K and 923K.
 - 923K is the maximum inner cladding temperature during the normal operation of metal fuel FBR in the case of Pu/(U+Pu)≦0.25.
 - reaction between metal fuel components (U,Pu,Zr) and Fe becomes dominant above 923K

-the reaction is not significant below 853K.

Reaction layer in RE5/ODS-steel couple

RE5 side

- Fe diffused and precipitated phase of Fe₂RE was formed.
- Diffusion of other cladding elements (Cr, W, etc) was not obvious.

cladding side

Wastage layer consisted of (Fe,Cr)₁₇RE₂ and RE-rich precipitates.

Reaction layers in other couples

RE5/PNC-FMS annealed at 923K for 12 h.

Reaction layer Wastage layer

RE5

HT9

(Fe,Cr)₁₇RE₂ + (Fe,Cr)₃RE + (Fe,RE,Cr)

Initial interface

RE5/HT9 annealed at 853K for 162 h.

- The liquid phase and void were formed on RE5 side in RE5/PNC-FMS
- Void were formed on RE5 side in RE5/HT9
- Ni depleted from HT9 near interface.
- Reaction in RE5/Fe-12Cr was similar to those in ODS-steel, PNC-FMS and HT9.

Summary of the reaction layers (RE5/cladding)

Temp.	RE5 side	Cladding side
		ODS-steel
923	Fe ₂ RE	(Fe,Cr) ₁₇ RE ₂ + RE-rich
853	Fe ₂ RE	$(Fe,Cr)_{17}RE_2 + RE-rich$
		PNC-FMS
923	Fe ₂ RE + Liquid+ Void	(Fe,Cr) ₁₇ RE ₂ + RE-rich
892	Fe ₂ RE + Void	(Fe,Cr) ₁₇ RE ₂ + RE-rich
853	Fe ₂ RE	(Fe,Cr) ₁₇ RE ₂ + RE-rich
		HT9
853	Fe ₂ RE + Void	(Fe,Cr) ₁₇ RE ₂ + (Fe,Cr) ₃ RE + RE-rich
		HT9
923	Fe ₂ RE	$(Fe,Cr)_{17}RE_2$ + $(Fe,Cr)_3RE$

- Although several differences were observed in the reaction layer in RE5 side, the wastage layer consisted of the matrix of (Fe,Cr)₁₇RE₂ and the lanthaniderich precipitated phases in common.
- The influence of the alloying elements to the cladding wastage layer formation was not significant.

Characteristics of the growth of wastage layer

The growth of the wastage layer was diffusion controlled.

Relation between the reaction rate constant and inverse of the temperature

- This result can be the basis for quantification of FCCI.
- ODS-steel provided better resistance characteristics compared to the PNC-FMS.

Reaction between U-Pu-Zr alloy and Fe

Tests of the U-Pu-Zr / Fe couples

 These tests were conducted in the globe box in Plutonium Fuel Research Facility of JAEA-Oarai in Japan

- *NAKAMURA, K., et al., "U-Pu-Zr metallic fuel fabrication for irradiation test at Joyo", in: Proc. FR09, Kyoto, Japan, Dec. 7-11, (2009)
- U-16Pu-10Zr alloy was manufactured by mixing existing U-20Pu-10Zr alloy rod with pure U and pure Zr by arc melting and casted by injection casting technique.

Casted alloy of U-16Pu-10Zr

Summary of test conditions for U-Pu-Zr with Fe.

Combination of the diffusion couple	Temperature	Time
diliusion couple	[K]	[hours]
U-16Pu-10Zr/Fe	943, 963	25
U-9Pu-10Zr/Fe	963, 983	30

 The temperature of the tests were selected to estimate the threshold temperature for the liquefaction

Reaction layer in U-16Pu-10Zr/Fe at 963K

Back-scattered electron images

100 µ m

Whole view

Identified phases

g	f	е	d	С	b	а
bcc	(U,Pu,Zr) ₆ Fe	(Zr,U,Pu)Fe ₂	(Zr,U,Pu)Fe ₂	(U,Zr,Pu)Fe ₂	(U,Zr,Pu)Fe ₂	(U,Zr,Pu)Fe ₂
+	+	+	+	+	+	
λ	Χ	(U,Pu,Zr) ₆ Fe	(U,Pu,Zr) ₆ Fe	(Zr,U,Pu)Fe ₂	(U,Zr,Pu) ₆ Fe	
	+	+	+	+		
	3	Liquid	Liquid	(U,Zr,Pu) ₆ Fe		
				+		
				Liquid		

Ternary phase diagrams (U-Zr-Fe, U-Pu-Fe)

U-Zr-Fe ternary phase diagram at 973 K

U-Pu-Fe ternary phase diagram at 983 K

Reaction layer in U-16Pu-10Zr/Fe at 943K

Back-scattered electron images

 $100 \mu m$ 50 µ m Enlarged image

Identified phases

е	d	С	b	а
bcc	(U,Pu,Zr) ₆ Fe	(Zr,U,Pu)Fe ₂	(Zr,U,Pu)Fe ₂	(U,Zr,Pu)Fe ₂
+	+	+		
λ	X	(U,Zr,Pu) ₆ Fe		

Reaction layer in U-9Pu-10Zr/Fe at 983K

Back-scattered electron images

Whole view

Identified phases

h	g	f	е	d	С	b	а
bcc	(U,Zr,Pu) ₆ Fe	(U,Zr,Pu) ₆ Fe	(U,Zr,Pu) ₆ Fe	(Zr,U,Pu)Fe ₂	(U,Zr,Pu)Fe ₂	(U,Zr,Pu)Fe ₂	(U,Zr,Pu)Fe ₂
+	+	+	+	+	+	+	
λ	Χ	(Zr,U,Pu)Fe ₂	Liquid	(U,Zr,Pu) ₆ Fe	(U,Zr,Pu) ₆ Fe	(U,Zr,Pu) ₆ Fe	
	+			+	+		
	3			Liquid	X		
					+		
					Liquid		

Reaction layer in U-9Pu-10Zr/Fe at 963K

Back-scattered electron images

Whole view

Identified phases

е	d	С	b	а
bcc	λ	(U,Zr,Pu) ₆ Fe	(Zr,U,Pu)Fe ₂	(U,Zr,Pu)Fe ₂
+		+		
λ		Χ		

Summary of the reaction (U-Pu-Zr/Fe)

It was confirmed that

- Stoichiometry of all the phases formed in the U-Pu-Zr/Fe couples were found in the ternary phase diagram of U-Zr-Fe system.
- In the U-16Pu-10Zr/Fe couple, the liquefaction threshold temperature is between 943 and 963K.
- In the U-9Pu-10Zr/Fe couple, the liquefaction threshold temperature is between 963 and 983K.
- The growth of wastage layer is accelerated due to the formation of liquid phase.

Liquid phase formation criteria

The threshold temperature for the lower Pu content was clarified.

Representative phases formed in FCCI were identified.

- The reaction between lanthanide elements and cladding
- The reaction between U-PU-Zr and cladding (Fe)

Characteristics of the wastage layer were clarified.

- Time and temperature dependency of the growth ratio of the wastage layer formed by lanthanide elements.
- Threshold temperature of the liquid phase formation in the reaction between U-Pu-Zr and Fe.

These results are used

- -as a basis for the FCCI modeling.
- -as a reference data in post-irradiation examination of irradiated metallic fuels.

Thank you for your attention.

Preparation of the lanthanide alloy (RE5)

13wt.%La-24wt.%Ce-12wt.%Pr-39wt.%Nd-12wt.%Sm

*The composition of the determined based on the fission yield of the lanthanide elements.

After the annealing for homogenization, RE5 alloy had three-phase structure.

Phase B Phase A Matrix 100 μm Back-scattered electron image of RE5 alloy after homogenization annealing.

The composition of the phases formed in RE5 [wt. %]

	La	Се	Pr	Nd	Sm
Average	13.0	24.0	12.0	39.0	12.0
Matrix	16.7	23.2	13.3	36.7	10.0
Phase A	8.9	13.9	12.0	48.8	16.3
Phase B	2.5	10.9	9.4	48.0	29.1

Preparation of the cladding alloys

Cladding materials

ODS-steel

- Ferritic steel
- Candidate material for FR cladding developed in Japan

HT9

- Ferritic/martensitic stainless alloy
- Irradiation experience in EBR-2 In U.S.

PNC-FMS

- Ferritic/martensitic stainless alloy
- Candidate material for FR cladding developed in Japan

Fe-12wt%Cr

 Simulating alloy for the cladding materials

Table : Compositions of the cladding materials

	С	Si	Mn	P	S	Ni	Cr	Mo	W	Ti	Nb	V	Y_2O_3	Fe
ODS-steel	0.13	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	9.0	-	1.95	0.21	-	-	0.36	Bal.
PNC-FMS	0.1	< 0.1	0.5	< 0.1	< 0.1	< 0.1	11.1	0.5	2.1	-	< 0.1	0.19	-	Bal.
HT9	0.2	0.2	0.2	-	-	0.6	12.0	1.0	0.5	-	-	0.3	-	Bal.
Fe-12wt%Cr	-	ı	-	-	-	-	12.0	-	ı	-	ı	-	-	Bal.

Weight ratio of rare-earth elements contained in the wastage layer. [wt.%]

	Region	Phase	La	Ce	Pr	Nd	Sm
RE5/ODS-steel	A	$(Fe,Cr)_{17}RE_2$	1.4	40.2	4.4	41.0	13.0
	В	$(Fe,Cr)_{17}RE_2 + RE$ -rich	3.4	25.7	5.0	51.2	14.7
RE5/PNC-FMS	A	$(Fe,Cr)_{17}RE_2$	2.5	35.1	5.6	32.6	24.2
	В	(Fe,Cr) ₁₇ RE ₂ + RE-rich	4.0	30.3	6.6	34.5	24.6
RE5 (Initial composition)			13.0	24.0	12.0	39.0	12.0

^{*}Region A: Near the unreacted ODS-steel or PNC-FMS in the wastage layer Region B: Near the initial interface in the wastage layer

Relative reactivity of the rare earth elements with Fe:

Ce > Nd, Sm > La, Pr

Area	Colour of the phase	Com	position	ratio [at.%]	Identified phase
		Fe	Zr	U	Pu	
a	(single phase)	71.5	6.5	20.2	1.8	(U,Zr,Pu)Fe ₂
b	(multi-phase)*	63.7	7.8	24.7	3.8	(U,Zr,Pu) ₆ Fe+(U,Zr,Pu)Fe ₂
c	bright*	51.8	11.0	31.6	5.6	(U,Zr,Pu) ₆ Fe+Liquid
С	dark	67.9	13.6	16.4	2.1	$(Zr,U,Pu)Fe_2+(U,Zr,Pu)Fe_2$
d	bright	19.3	4.2	64.1	12.4	(U,Pu,Zr) ₆ Fe+Liquid
d	dark	65.9	19.1	13.0	2.0	(Zr,U,Pu)Fe ₂
e	bright	19.8	3.5	69.1	7.6	(U,Pu,Zr) ₆ Fe+Liquid
e	dark	72.4	16.9	9.8	0.9	(Zr,U,Pu)Fe ₂
f	bright	23.4	4.0	65.6	7.6	(U,Pu,Zr) ₆ Fe
f	dark-1*	29.9	15.7	46.6	7.9	χ
f	dark-2	34.9	35.9	25.4	3.8	3
g	bright	0.9	14.9	71.9	12.2	bcc
g	dark	8.9	22.1	57.1	11.9	λ

Area	Colour of the phase	Comp	osition	ratio [at	.%]	Identified phase
		Fe	Zr	U	Pu	
a	(single phase)	73.1	3.5	21.9	1.5	(U,Zr,Pu)Fe ₂
b	(single phase)	67.5	20.2	11.2	1.1	(Zr,U,Pu)Fe ₂
С	(multi-phase)*	39.1	13.9	43.0	4.0	(U,Zr,Pu) ₆ Fe+(Zr,U,Pu)Fe ₂
d	(multi-phase)*	25.6	11.6	57.6	5.3	(U,Zr,Pu) ₆ Fe+χ
e	bright	0.6	12.5	74.0	12.9	bcc
e	dark	7.2	22.0	58.2	12.6	λ

9Pu 983K

ID	CRIEPI
Ш	Central Research Institute of

Area	Colour of the phase	Con	nposition	ratio [a	Identified phase	
		Fe	Zr	U	Pu	
a	(single phase)	71.5	6.4	21.1	1.0	(U,Zr,Pu)Fe ₂
b	bright*	49.3	6.8	39.4	4.5	(U,Zr,Pu) ₆ Fe
b	dark	66.5	9.6	22.1	1.8	(U,Zr,Pu)Fe ₂
c	bright*	46.4	8.5	40.1	5.0	(U,Zr,Pu) ₆ Fe+Liquid
c	dark-1	65.9	13.7	18.0	2.4	(U,Zr,Pu)Fe ₂
c	dark-2(granular)	44.2	27.3	24.8	3.7	χ
d	bright	34.4	6.1	53.3	6.2	(U,Zr,Pu) ₆ Fe+Liquid
d	dark	68.3	20.6	10.1	1.0	(Zr,U,Pu)Fe ₂
e	bright	21.3	4.3	70.0	4.4	(U,Zr,Pu) ₆ Fe+Liquid
f	(multi-phase)*	59.0	16.6	22.1	2.2	(U,Zr,Pu) ₆ Fe + (Zr,U,Pu)Fe ₂
g	bright	-	-	-	-	(U,Zr,Pu) ₆ Fe
g	dark-1*	34.7	19.2	43.0	3.0	χ
g	dark-2*	26.7	21.0	48.0	4.3	3
h	bright	0.7	15.1	74.2	10.0	bcc
h	dark	8.8	22.5	60.1	8.6	λ

Area	Colour of the phase	Compo	sition rat	Identified phase		
		Fe	Zr	U	Pu	
a	(single phase)	70.4	5.2	23.4	0.9	(U,Zr,Pu)Fe ₂
b	(single phase)*	68.3	15.4	15.8	0.4	(Zr,U,Pu)Fe ₂
С	(multi-phase)*	31.2	13.9	52.6	2.3	$(U,Zr,Pu)_6Fe+\chi$
d	(single phase)*	10.9	19.7	64.2	5.1	λ
e	bright	0.7	16.2	76.9	6.2	bcc
e	dark	4.6	18.2	70.6	6.6	λ

Assessed isothermal sections at 923K

