DE LA RECHERCHE À L'INDUSTRIE

Transmutation in ASTRID

"FR13 – Technical Session 6.4" Jean-Paul Grouiller, Laurent Buiron, Gérard Mignot, Raphael Palhier

www.cea.fr

March 7, 2013

OUTLINE

Transmutation in Advanced Sodium Technological Reactor for Industrial Demonstration

- Objectives of ASTRID
- Concepts of transmutation
- Core design
- **Transmutation of Minor Actinides (MA)**
- **Summary**

Technological Demonstrator for Sodium Fast Reactor

(could be a step before a First Of A Kind)

Integrating French and International SFRs feedback

→A GEN IV system

Safety :

- Level at least equivalent to GEN III systems
- Progress on Na reactors specificities
- Integrating FUKUSHIMA accident feedback

Operability :

- Load factor of 80% or more after first "learning" years
- Significant progress concerning In Service Inspection & Repair (ISIR)

Ultimate wastes transmutation :

- Realization of demonstrations on minor actinides transmutation according to June 28,

2006 French Act on Wastes Management

A mastered investment cost

→Irradiation services and options test

4th Generation Systems - Transmutation

Contribution to the radiotoxicity of UOX (60 GWd/t)

Spent Fuel decay heat and Radiotoxixty for long term :

Pu > Am > Cm > U > Np

→Reduction of :

>the risk

22

≻the footprint of the storage

IAEA - FR13 – "Technical Session 6.4"

Homogeneous mode

Fuels (U,Pu,MA)O₂

Heterogeneous mode

Innovative SFR core representative of technological options and performances of the future SFR industrial cores :

- Improved safety : in particular, increased prevention of the core fusion accident and minimized significant mechanical energy release in case of core fusion
- Performance : increased fuel cycle length and high burn up
- Resources economy: flexibility for breeding
- Capability for minor actinides transmutation

Experimental irradiations (in support to the SFR development)

Core design option

1500 MWth CFV V1 Core	
Fuel sub assemblies	291(177+114)
Control rods	18 (12+6)
Fuel	(UPu)O ₂
Clad material	Austenitic clad (AIM1)
Number of batches / Fuel cycle length (efpd)	4 x 360
Fuel residence time (efpd)	1440
$\Delta \rho$ core burn-up reactivity loss (pcm/efpd)	-4,3
Na void worth (\$)	-0,5
Breeding gain	-0,02
Plin max BOL (W/cm)	483

(Patent CEA EDF AREVA)

CEA | March 7, 2013 | PAGE 7

Transmutation potential in ASTRID

CEA | March 7, 2013 | P/

Transmutation of Am in ASTRID

The main objective is to burn the americium produced by the standard $(U,Pu)O_2$ fuel in ASTRID \rightarrow Initial Am limits

Homogeneous mode ~ 2% of Am

Transmutation of Am in ASTRID

Heterogeneous mode ~ 10 % of Am

Transmutation of Am in ASTRID

Homogeneous concept with 2% of Am

- Negative balance for Am
- o Increase de Cm production (x3 after 5 years of cooling time)
- **o** Negative balance for total minor actinides
- Heterogeneous concept with 10% of Am
 - o Am consumption > Am production in the MOX after 5 years of cooling time
 - Consumption of total MA ~ Production in the MOX (3 years of cooling)
 - →Impacts on :
 - Core safety
 - Fuel handling

Transmutation of Am in ASTRID : Impacts on core safety

core safety coefficients		(U, Pu)O2	Homogeneous 2%	Heterogeneous 10%
Void coefficient (EC)	\$	-1.05	-0.54	-1.05
Margin to melting	°C	>300	>300	>300
Max. temperature of Na	°C	908	909	904
Temperature neutron choking	°C	737	729	725
δρ max insert	pcm	243	221	228

The results for the two modes of transmutation show that the core safety coefficients are not impacted, including a sodium void coefficient that remains negative

Transmutation of Am in ASTRID : Impacts on fuel handling

Handling fuels	(U, Pu)O2	Homogeneous 2%	Heterogeneous 10%
New sub-assembly, aging time 2 years			
Power (kW/sub-assembly)	0.39	0.55	0.95
Spent fuels			
Time to reach 40 kW	< 1 day	1 day	< 1 day
Time to reach 7.5 kW (days)	68	168	350
Time to reach 5 kW (days)	123	291	485
s for the two ransmutation ew and spent -assembly stems are not acted.	Receipt, Ins Condition	spection, oning mination Post Washing Side Vessel	Loading- Unloading

The results modes of tr show that ne fuel subhandling sys impa

02

Transmutation in ASTRID : Np and Cm

□ Americium is a priority

□ The substitution of part of the americium by neptunium has no effect on the impact on the various analysis criteria

Curium is not taken into consideration for the transmutation demonstration in ASTRID

Significant impact on handling of new sub assembly

(decay heat and neutron source)

DE LA RECHERCHE À L'INDUSTRIE

Summary and future prospects for incorporating Am in ASTRID

> Potential to demonstrate the minor actinide transmutation on an industrial scale in the CFV V1 core of ASTRID :

- o Homogeneous concept : 2% of Am in a standard fuel
- o Heterogeneous concept : 10% on UO₂ in the radial blanket

➤ The objective of ensuring a balance in the Am (and total minor actinides) flow in the ASTRID fuel cycle may be obtained without any impact on the design of the core and handling systems for the management of the new and spent fuel subassemblies

> Several experimental phases in ASTRID to implement different transmutation scenarios using homogeneous and heterogeneous concepts.

→ the availability of facilities involved in the ASTRID material cycles

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 64 50 23 23| F. +33 (0)1 64 50 11 86

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Direction de l'énergie nucléaire Département d'Etudes des Réacteurs Cellule Projet ASTRID