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We report on our latest results in the calculation of the three-loop heavy flavor contributions
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≫ m2. We
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1. Introduction

In the largeQ2 limit, the heavy flavor Wilson coefficients in deep-inelastic scattering (DIS) are
known to factorize into light flavor Wilson coefficients and massive operator matrix elements [1,2].
These heavy flavor coefficients can then be convoluted with parton distribution functions (PDFs) to
obtain the heavy flavor corrections to deep-inelastic scattering structure functions, which amount
to sizeable contributions, in particular in the region of small values of the Bjorken variablex.
At NNLO, the light flavor Wilson coefficients are known [3]. The missing ingredients required
to obtain the heavy flavor Wilson coefficients are therefore the 3-loop massive operator matrix
elements (OMEs).

Here we present our latest results in the ongoing effort to calculate these quantities. Par-
ticularly, six out of eight OMEs are by now available. The simplest operator matrix elements,
A(3),PS

qq,Q andA(3)
qg,Q, were obtained in [4]. More recently,A(3)

gq [5], A(3),NS,TR
qq [6] andA(3),PS

Qq [7] were
calculated using a variety of techniques to be described in the following sections. Using these
operator matrix elements, we have been able to obtain the Wilson coefficientsLPS

q,(2,L), LS
g,(2,L) [8],

LNS
q,(2,L) [6] and HPS

q,(2,L) [7]. The asymptotic heavy flavor corrections toFL(x,Q2) have been cal-

culated in Refs. [8, 9]. Also, results for the terms proportional toT2
F in A(3)

gg,Q [10] and allNFT2
F

terms [4, 11, 12] have been computed. Once the last two operator matrix elements are completed,
and the corresponding heavy flavor contributions to the DIS structure functions are then obtained,
it will be possible to make more precise determinations ofαs and the mass of the charm quarkmc,
as well as provide better constraints on sea quarks and the gluon and thus improve the results given
in [13–15]. The 3-loop OMEs are also needed to obtain the matching relations at NNLO in the vari-
able flavor number scheme (VFNS) [2, 16]. Starting with 3-loop order there are also heavy flavor
contributions due to graphs containing massive fermion lines of different mass, see Refs. [17–19]
and the talk by F. Wißbrock [20] presented at this conference. Furthermore, the asymptotic heavy
flavor corrections for the charged current processes have also been calculated to next-to-leading
order (NLO) [21,22].

The operator matrix elements have been calculated using thestandard Feynman rules of QCD
together with the Feynman rules for operator insertions as described in Refs. [6, 23]. Feynman
diagrams were generated based on these rules usingQGRAF [24]. The output ofQGRAF was
then processed usingForm [25], after which the diagrams end up being expressed as a linear
combination of a large number of scalar integrals. These scalar integrals are then reduced to a much
smaller set of master integrals using integration by parts identities, as described in Section 2.1.
The master integrals are then calculated using a variety of techniques. These will be discussed in
Section 2.2, where we will make special emphasis on the differential equations method. We will
discuss our results in Section 3. The conclusions are given in Section 4.

2. Calculation of the operator matrix elements

2.1 Integration by parts identities

We calculate the operator matrix elements as functions of the Mellin variableN, and perform the
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reduction to master integrals using theC++ programReduze2 [26]1, which implements Laporta’s
algorithm [29]. It is not so straightforward to apply this algorithm to the case where we have
operator insertions, precisely because of the dependence on the arbitrary parameterN. Laporta’s
algorithm is designed to work with integrals with definite indexing, and although it may be possible
to adapt this algorithm to the case where we have an arbitraryindexN, we found a more elegant
solution by rewriting the operator insertions in terms of propagators, which will be raised to definite
powers. For example, in the case of an insertion on a line, theoperator insertion will be proportional
to (∆.k)N−1, wherek is the momentum going through the line, and∆ is a light-like vector. We
now introduce a new variablex and re-express the operator insertion by the following generating
function

(∆.k)N−1
→

∞

∑
N=1

xN−1(∆.k)N−1 =
1

1−x∆.k
. (2.1)

In the case of 3-, 4- and 5-point operator insertions, we can similarly re-express the operator inser-
tion in terms of products of the same type of artificial propagators. These new propagators can be
added to the list of propagators defining the integrals, and Laporta’s algorithm can then be applied
without problems. Propagators like the one given in Eq. (2.1) are known as bilinear propagators,
andReduze2 has been adapted to be able to deal with such objects. Auxiliary propagators are in-
troduced when needed in such a way that all products of internal momenta with an external/internal
momentum or with∆ can be uniquely expressed as a linear combination of inversepropagators. A
set of propagators that satisfies this condition is called anintegral family. All integrals involved in a
given problem will be identified by specifying an integral family and the powers of the propagators,
which can be negative if the integral has irreducible numerators. We have found that all integrals
required for the calculation of all of the eight OMEs can be specified using 24 integral families.

2.2 Calculation of the master integrals

For the calculation of the master integrals we used a combination of one or more of the following
methods, depending on the complexity of the integral under consideration:

• Summation methods, implemented in theMathematicapackageSigma [30,31], based on
advanced symbolic summation algorithms in the setting of difference fields [32–40], and the
packagesHarmonicSums [41–44],EvaluateMulti- Sums, andSumProduction
[45].

• Hypergeometric functions [47–49].

• Mellin-Barnes representations [50–53].

• In the case of convergent massive 3-loop Feynman integrals,they can be performed in terms
of hyperlogarithms, generalizing the method proposed in [54] to massive diagrams with op-
erator insertions [49,55].

• Differential (difference) equations [56].

1The programReduze2 uses the codesFermat [27] andGiNaC [28].
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The summation methods and other mathematical methods we used in the representation and re-
duction of nested sums and iterated integrals we have used were described in detail in the talks
by C. Schneider [57], J. Ablinger [58] and C. Raab [59, 60] given at this conference. Some of the
integrals can be completely solved in terms of hypergeometric functions (including Appell hyper-
geometric functions) with parameters depending onN and the dimensionD = 4+ ε , or multiple
sums of such functions where the summation indices also appear in the parameters of the hyperge-
ometric function. If the corresponding series representation is convergent, the resulting sums can
then be performed usingSigma. A survey on the function spaces, which have appeared in the
present calculations, is given in Ref. [61].

In some cases, after Feynman parameterization of the integrals, the Feynman parameters can
be integrated in terms of Beta functions by splitting a denominator using [52,53]

1
(A+B)ν =

1
2π i

∫ +i∞

−i∞
dσ

Γ(−σ)Γ(σ +ν)
Γ(ν)

Aσ

Bσ+ν . (2.2)

The remaining contour integral inσ can then be done with the help of theMathematicapackage
MB [62], which finds a contour and a value ofε such that the Feynman integral is well defined, and
then analytically continues toε → 0. After this, we can take residues and then sum them using
Sigma.

The method of hyperlogarithms and its generalizations havebeen described in detail in [55],
where a few examples were presented. This method applies to Feynman integrals which are non-
singular in the dimensional parameterε . It relies on theα-parameterization of the integrals, inte-
grating each parameter one after the other. A required condition for the applicability of this method
is that after each integration, the denominators of the integrals remain linearly factorizable in theα
parameters. Many of the most interesting integrals appearing in our calculations do not satisfy this
condition. It can be applied, if e.g. quadratic forms of Feynman parameters can be transformed
away or mapped into the argument of the iterated integral. Inthe massive case, however, this is not
always possible, whatever order of integrations is applied.

Many of the most complicated integrals we have encountered so far were solved using the
differential equations method. The idea behind this methodis to take derivatives of the master
integrals with respect to the invariants of the problem, andthen re-express the result in terms of the
master integrals themselves. This leads to a system of differential equations that can then be solved
once appropriate boundary conditions are found. In our case, we take advantage of the introduction
of the auxiliary variablex, as shown in Eq. (2.1), and take derivatives with respect to this variable.
For example, consider the following two master integrals, which were needed to obtainA(3),PS

Qq ,

M1(x) =

∫

dDk1

(2π)D

dDk2

(2π)D

dDk3

(2π)D

1
D1D2D3D4D5D6D7

, (2.3)

M2(x) =

∫

dDk1

(2π)D

dDk2

(2π)D

dDk3

(2π)D

1

D2
1D2D3D4D5D6D7

, (2.4)

where

D1 = (k1− p)2, D2 = (k2− p)2, D3 = k2
3−m2, D4 = (k1−k3)

2
−m2, (2.5)

D5 = (k2−k3)
2
−m2, D6 = 1−x∆.k3, D7 = 1−x(∆.k3−∆.k1). (2.6)
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Herem is the mass of the heavy quark, andp the momentum of the external light quark, which is
taken on-shell (p2 = 0). Taking derivatives with respect tox we obtain

d
dx

M1(x) =
1

1−x

(

2+ ε −
1
x

)

M1(x)+
2x

1−x
M2(x)+

K1(x)
1−x

, (2.7)

d
dx

M2(x) = −
1

1−x

(

1−2ε
x

+
3
2

ε −2

)

M2(x)

+
ε
4
(2+3ε)

1
1−x

(

1
x2 −

1
x

)

M1(x)+
K2(x)
1−x

, (2.8)

whereK1(x) andK2(x) are linear combinations of sub-sector master integrals that have been solved
previously. In Eqs. (2.7,2.8), we have set the massmand∆.p to 1 for simplicity. Now we undo the
introduction of the variablex. Since

M1(x) ∝
∞

∑
N=0

xNF1(N) and M2(x) ∝
∞

∑
N=0

xNF2(N), (2.9)

we obtain the following system of difference equations,

(N+2)F1(N+1)− (N+2+ ε)F1(N)−2F2(N−1) = K1(N) , (2.10)

(N+2−2ε)F2(N+1)−

(

N+2−
3
2

ε
)

F1(N) (2.11)

−
ε
4
(2+3ε)(F1(N+2)−F1(N+1)) = K2(N) , (2.12)

whereK1(N) andK2(N) are theNth terms of the Taylor expansions ofK1(x) andK2(x), respec-
tively. This system can now be solved usingSigma, together with theMathematica package
OreSys [63]; for further details on this approach we refer to [57]. In order to be able to do so, we
need to obtain a few initial values for the integrals under consideration, which we can do using the
programMATAD [64] or by doing reductions of tensor integrals to scalar integrals [10]. Many of
the master integrals needed to obtainA(3),PS

Qq and some of the terms∝ T2
F in A(3)

gg were calculated this
way. Recently, 3-loop quarkonic ladder andV-topology diagrams have also been obtained using
this method, cf. [57].

3. Results

The expressions obtained for the operator matrix elementsA(3)
gq , A(3),NS

qq andA(3),TR
qq have been found

to be given in terms of harmonic sums [65, 66] of up to weight five. ForA(3),PS
Qq for the first time

generalized sums [44,67] appear in the final answer, namely,

Sa,~b(ζ ,
~ξ ;N) =

N

∑
k=1

ζ k

ka S~b(
~ξ ;k)≡ Sa,~b(ζ ,

~ξ ) . (3.1)

In particular, the constant term inA(3),PS
Qq contains the following generalized sums

S1

(

1
2

)

, S2

(

1
2

)

, S3

(

1
2

)

, S1,1

(

1
2
,1

)

, S1,1

(

1,
1
2

)

, S2,1

(

1
2
,1

)

, S1,2

(

1
2
,1

)

, S2,1

(

1,
1
2

)

,

S1,2

(

1,
1
2

)

, S1,1,1

(

1
2
,1,1

)

, S1,1,1

(

1,
1
2
,1

)

, S1,1,1

(

1,1,
1
2

)

, S3 (2) , S1,2 (2,1) , S2,1 (2,1) ,
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etc., where we have omitted the explicit dependence onN.
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Figure 1: TheO(a3
s) contribution byLS

g,2 to the structure functionF2(x,Q2) for mc = 1.59 GeV using the
parton distributions [15] (from Ref. [8]).

In terms of a Mellin transform,

f̂ (N) =

∫ 1

0
dx xN−1 f (x) (3.2)

these sums lead to generalized harmonic polylogarithms [44]. Using a recent reduction mechanism
available inHarmonicSums we were able to transform the physical result into the harmonic
polylogarithms [68] evaluated atx and 1− 2x. There are also other equivalent representations
requiring generalizations of the Mellin transform, cf. [7].

In the case of the terms∝ T2
F in A(3)

gg [10] and forV-graph topologies contributing toA(3)
Qg [55]

we also found finite nested (inverse) binomial sums over (generalized) harmonic sums such as

1
4N

(

2N
N

) N

∑
k=0

4k

kl
(2k

k

)S1(k), l ∈ N (3.3)

or
N

∑
i=1

(

2i
i

)

(−2)i
i

∑
j=1

1

j
(2 j

j

)S1,2

(

1
2
,−1; j

)

, (3.4)

whereS~a(N) denotes a nested harmonic sum.
Doing the inverse Mellin transform of these sums we find that these are expressed in terms of

iterated integrals over root-valued alphabets. In total, we have found that 33 new letters are needed
in the algebraically irreducible representations for the calculations we have done so far.
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The calculation of all these OMEs has allowed us also to checkthe corresponding contributions
to the 3-loop anomalous dimensions. We find perfect agreement with the literature. In the case of
transversity, these have been calculated for the first time ab initio.
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Q2 = 1000GeV2, O(a2s)
Q2 = 20GeV2, O(a3s)

Q2 = 100GeV2, O(a3s)
Q2 = 1000GeV2, O(a3s)

Figure 2: The flavor non-singlet contribution of the Wilson coefficient LNS
q,2 to the structure functionF2(x,Q2)

at 2- and 3-loop order using the NNLO parton distribution functions [15] in the on-shell scheme formc =

1.59 GeV (from Ref. [6]).

Having calculated these OMEs, the remaining tasks are the convolution with the massless
Wilson coefficients and then with the PDFs, in order to obtainthe contributions to the structure
functions. We have obtained numerical results for the Wilson coefficientsLPS

q,(2), LS
g,(2) [8] and

LNS
q,(2) [6] to 3-loop order. In Figure 1 the 3-loop corrections by theWilson coefficientLS

g,2 is
shown. In the kinematic region probed by HERA it reaches∼ 1%, i.e. the experimental accuracy
and is therefore of importance. They are larger than the 2-loop corrections for this quantity, due to
a term∝ 1/zemerging first in the 3-loop corrections, cf. [8]. In Figure 2, we show the contribution
of the heavy flavor non-singlet Wilson coefficient to structure functionF2(x,Q2) at 2- and 3-loop
order, for different values ofQ2. They turn out to be smaller than 1% in the kinematic region of
HERA. In Ref. [6] we also presented the complete transformation coefficients in the VFNS in the
non-singlet case at 3-loop order. Future high-luminosity machines such as the EIC [69] will reach
a much higher resolution forF2(x,Q2) than HERA. Here all these terms will be of experimental
relevance. Numerical results on the pure-singlet contributions will be given later this year.

4. Conclusions

Considerable progress has been made recently in the calculation of the NNLO heavy flavor contri-
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butions to the structure functions in DIS for large values ofQ2. By now, six out of eight operator
matrix elements (and the associated anomalous dimensions)have been completed, and partial re-
sults are available for the remaining two OMEs. This progress was possible thanks to the devel-
opment of new computer algebra and mathematical technologies. Several programs have played
a crucial role in these calculations, such asReduze2 for the reduction to master integrals, and
Sigma, HarmonicSums, EvaluateMultiSums, SumProduction andOreSys for sum-
mation algorithms and the solution of difference equations. These programs and the algorithms
associated with them continue to be developed and refined as we encounter ever more challenging
problems in this endeavor. The 3-loop heavy flavor Wilson coefficients calculated so far yield con-
tributions toF2(x,Q2) of O(. 1%), cf. [6, 8], reaching the experimental accuracy of the structure
functionF2(x,Q2) at HERA. We will report on numerical results for further Wilson coefficients and
OMEs in the future. The completion of this project is underway and will allow us to make more
precise determinations ofαs andmc, the parton distribution functions, as well as to establishthe
VFNS at NNLO, needed for predictions at hadron colliders such as the LHC.
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