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Recent progress on the calculation of three-loop heavy flgitson coefficients in DIS A. De Freitas

1. Introduction

In the largeQ? limit, the heavy flavor Wilson coefficients in deep-inelassicattering (DIS) are
known to factorize into light flavor Wilson coefficients anéssive operator matrix elements [1,2].
These heavy flavor coefficients can then be convoluted wittopaistribution functions (PDFs) to
obtain the heavy flavor corrections to deep-inelastic sgag structure functions, which amount
to sizeable contributions, in particular in the region ofafinvalues of the Bjorken variablg.
At NNLO, the light flavor Wilson coefficients are known [3]. &hmissing ingredients required
to obtain the heavy flavor Wilson coefficients are thereftre 3-loop massive operator matrix
elements (OMES).

Here we present our latest results in the ongoing effort toutate these quantities. Par-
ticularly, six out of eight OMEs are by now available. The plast operator matrix elements,
A5 andAl ., were obtained in [4]. More recentiyy [5], A ™™ [6] and A" [7] were
calculated using a variety of techniques to be describedhénfallowing sections. Using these
operator matrix elements, we have been able to obtain tI’&DWltoefficients_ngL), La 21y 81,
Lc’:‘.(sz’l_) [6] and ng (SZ.L) [7]. The asymptotic heavy flavor corrections Fo(x, Q%) have been cal-

culated in Refs. [8,9]. Also, results for the terms progordl to T2 in AQQ [10] and allNg T?
terms [4, 11, 12] have been computed. Once the last two apersitrix elements are completed,
and the corresponding heavy flavor contributions to the & wure functions are then obtained,
it will be possible to make more precise determinationggdnd the mass of the charm quamk,

as well as provide better constraints on sea quarks anduba ghd thus improve the results given
in [13—15]. The 3-loop OMEs are also needed to obtain the mrajaelations at NNLO in the vari-
able flavor number scheme (VFNS) [2, 16]. Starting with 3pl@oder there are also heavy flavor
contributions due to graphs containing massive fermiossliof different mass, see Refs. [17-19]
and the talk by F. WiBbrock [20] presented at this conferefeethermore, the asymptotic heavy
flavor corrections for the charged current processes haeelmen calculated to next-to-leading
order (NLO) [21, 22].

The operator matrix elements have been calculated usingdhdard Feynman rules of QCD
together with the Feynman rules for operator insertionseseribed in Refs. [6, 23]. Feynman
diagrams were generated based on these rules GXBRA\F [24]. The output of QGRAF was
then processed usingor m[25], after which the diagrams end up being expressed asearlin
combination of a large number of scalar integrals. Thedasitdegrals are then reduced to a much
smaller set of master integrals using integration by pakstities, as described in Sectipn]2.1.
The master integrals are then calculated using a varietyabiniques. These will be discussed in
Section[2.2, where we will make special emphasis on therdiitéal equations method. We will
discuss our results in Sectifh 3. The conclusions are giv&ectior] .

2. Calculation of the operator matrix elements

2.1 Integration by partsidentities

We calculate the operator matrix elements as functionseoMallin variableN, and perform the
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reduction to master integrals using @&+ programReduze?2 [26]%, which implements Laporta’s
algorithm [29]. It is not so straightforward to apply thigatithm to the case where we have
operator insertions, precisely because of the dependantieecarbitrary parametéd. Laporta’s
algorithm is designed to work with integrals with definite@xing, and although it may be possible
to adapt this algorithm to the case where we have an arbitnadgx N, we found a more elegant
solution by rewriting the operator insertions in terms afagators, which will be raised to definite
powers. For example, in the case of an insertion on a linapkeator insertion will be proportional
to (A.k)N-1, wherek is the momentum going through the line, afdds a light-like vector. We
now introduce a new variabbeand re-express the operator insertion by the following cimey

function
_ hd _ _ 1
(A.k)'\l 1—>NZ xN 1(A.k)'\‘ 1_ 1K (2.1)
=1 .

In the case of 3-, 4- and 5-point operator insertions, we tailasly re-express the operator inser-
tion in terms of products of the same type of artificial progtags. These new propagators can be
added to the list of propagators defining the integrals, aapbkta’s algorithm can then be applied
without problems. Propagators like the one given in Eqg])(@r& known as bilinear propagators,
andReduze?2 has been adapted to be able to deal with such objects. Ayxirapagators are in-
troduced when needed in such a way that all products of iatemomenta with an external/internal
momentum or withA can be uniquely expressed as a linear combination of inygmgEgators. A
set of propagators that satisfies this condition is calleidimgral family. All integrals involved in a
given problem will be identified by specifying an integraifdy and the powers of the propagators,
which can be negative if the integral has irreducible numoesa We have found that all integrals
required for the calculation of all of the eight OMESs can bediped using 24 integral families.

2.2 Calculation of the master integrals

For the calculation of the master integrals we used a cortibiaf one or more of the following
methods, depending on the complexity of the integral undesideration:

e Summation methods, implemented in & henat i ca packagesi gnma [30,31], based on
advanced symbolic summation algorithms in the settingfédr@ince fields [32—40], and the
packagedHar noni cSuns [41-44],Eval uat eMul ti - Suns, andSunPr oducti on
[45].

e Hypergeometric functions [47—49].
e Mellin-Barnes representations [50-53].

¢ In the case of convergent massive 3-loop Feynman intedhalg,can be performed in terms
of hyperlogarithms, generalizing the method proposed 4 {& massive diagrams with op-
erator insertions [49, 55].

o Differential (difference) equations [56].

1The progranReduze? uses the codeBer mat [27] andG NaC[28].
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The summation methods and other mathematical methods vdeingbe representation and re-
duction of nested sums and iterated integrals we have usesl described in detail in the talks
by C. Schneider [57], J. Ablinger [58] and C. Raab [59, 60Fkgiat this conference. Some of the
integrals can be completely solved in terms of hypergeamitnctions (including Appell hyper-
geometric functions) with parameters depending\oand the dimensiol = 4+ &, or multiple
sums of such functions where the summation indices alscaafipéhe parameters of the hyperge-
ometric function. If the corresponding series repres@mds convergent, the resulting sums can
then be performed usingi gma. A survey on the function spaces, which have appeared in the
present calculations, is given in Ref. [61].

In some cases, after Feynman parameterization of the aigeghe Feynman parameters can
be integrated in terms of Beta functions by splitting a deimaor using [52, 53]

1 1 +i°0d0 r—o)r(c+v) A°
(A+B)Y 271 J iw r(v) Bo+V

(2.2)

The remaining contour integral m can then be done with the help of thlet henat i ca package
MB [62], which finds a contour and a value ©such that the Feynman integral is well defined, and
then analytically continues to — 0. After this, we can take residues and then sum them using
Si gna.

The method of hyperlogarithms and its generalizations lheen described in detail in [55],
where a few examples were presented. This method appliesytintan integrals which are non-
singular in the dimensional parameterlt relies on thea-parameterization of the integrals, inte-
grating each parameter one after the other. A required tiondor the applicability of this method
is that after each integration, the denominators of thegnale remain linearly factorizable in tle
parameters. Many of the most interesting integrals appgamiour calculations do not satisfy this
condition. It can be applied, if e.g. quadratic forms of Hewam parameters can be transformed
away or mapped into the argument of the iterated integrahdmmassive case, however, this is not
always possible, whatever order of integrations is applied

Many of the most complicated integrals we have encounteoefdirswere solved using the
differential equations method. The idea behind this metisa take derivatives of the master
integrals with respect to the invariants of the problem, et re-express the result in terms of the
master integrals themselves. This leads to a system ofeliffial equations that can then be solved
once appropriate boundary conditions are found. In our, eeseake advantage of the introduction
of the auxiliary variable, as shown in Eq[(23.1), and take derivatives with respedtisovariable.
For example, consider the following two master integralsiclw were needed to obtaA@?Ps,

M) = / dPk; dPk, dPkg 1 2.3

B~ ] (2m)P (2m)P (2P D1D,D3D4DsDgD7 '
dPk; dPk, dPkg 1

Ma(X) = 2.4

2(¥) / (2m)P (2m)P (2m)P D2D,D3D4DsDgD7 ° (2:4)

where

D1=(ki—p)%, D2=(ke—p)?, Daz=kj—n?, Dy= (kx—ks)?—nv, (2.5)
Ds = (kg—k3)2—mz, Dg = l—XA.kg, D7 = 1—X(A.k3—A.k1). (26)
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Herem s the mass of the heavy quark, apdhe momentum of the external light quark, which is
taken on-shell |§? = 0). Taking derivatives with respect xove obtain

d
M) = % <2+£— )_1(> Mo (%) + %Mz(x) + iil_(xi 2.7)
d 1 (1-2 3
—Ma(x) = _ﬁ< _ E+§s—2> Ma(X)
£ 1 1 1 Kao(X

whereK; (x) andK»(x) are linear combinations of sub-sector master integratsénge been solved
previously. In Egs.[(2}¥,3.8), we have set the massdA.p to 1 for simplicity. Now we undo the
introduction of the variable. Since

M (x) O éoxNFl(N) and My(x) O NioxNFg(N), (2.9)

we obtain the following system of difference equations,
(N+2)Fi(N+1)— (N+2+¢&)Fi(N) — 2R (N —1) = Ky(N), (2.10)
(N+2-2¢e)F(N+1)— <N+2—gs> F1(N) (2.12)
_§(2+ 3) (Fu(N+2) — Fy(N+1)) = Ka(N), (2.12)

whereK1(N) andK,(N) are theNth terms of the Taylor expansions Kf (x) andKx(x), respec-
tively. This system can now be solved usiBiggma, together with thévat hemat i ca package

Or eSys [63]; for further details on this approach we refer to [5#.order to be able to do so, we
need to obtain a few initial values for the integrals undersideration, which we can do using the
programMATAD [64] or by doing reductions of tensor integrals to scalaegnals [10]. Many of
the master integrals needed to obw@g’Psand some of the terms T2 in Aé,%,) were calculated this
way. Recently, 3-loop quarkonic ladder avietopology diagrams have also been obtained using
this method, cf. [57].

3. Results

The expressions obtained for the operator matrix eleméfa)rsAé%)’NS andA&?’TR have been found
to be given in terms of harmonic sums [65, 66] of up to Weigme.ﬁb"orAgc)l’F>S for the first time
generalized sums [44,67] appear in the final answer, namely,

. N 7k .
Sp(CEN) =S ¢ $(&:K=85(¢.¢) (3.1)

ka
&k

In particular, the constant term A@'PS contains the following generalized sums

1 1 1 1 1 1 1 1
S.l. <§> ) & <§> ) 83 (é) ) Sl,l <§71> ) Sl,l <1a E) ) 82,1 <§71> ) 31,2 <§71> ) 82,1 (17§> )

Sz <1, %) St @1 1) . Sii <1, . 1) St (1, 1, %) L S(2), S12(2,1), S1(2,1),
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etc., where we have omitted the explicit dependenchl.on

0.07 ' r T T
O(a?3) contribution of L? ,
0.06 Q? = 1000 GeV? ]
Q? =100GeV? — —
0.05 Q*=20GeV® - — -
0.04 .
&

0.03 .
0.02 .
0.01 .

0 L

107° 1072 107!

Figure1: TheO(a3) contribution byL3 , to the structure functiofiz(x, Q%) for m = 1.59 GeV using the
parton distributions [15] (from Ref. [8]).

In terms of a Mellin transform,
R 1
£(N) :/ oML (x) 3.2)
0

these sums lead to generalized harmonic polylogarithims #8Ing a recent reduction mechanism
available inHar noni cSuns we were able to transform the physical result into the haimon
polylogarithms [68] evaluated at and 1— 2x. There are also other equivalent representations
requiring generalizations of the Mellin transform, cf..[7]

In the case of the ternis TF2 in A(g3g) [10] and forV-graph topologies contributing mg& [55]
we also found finite nested (inverse) binomial sums overdgdized) harmonic sums such as

1 /2N\ N4k
m(w%&@*”’ | e N (3.3)

ii <2||> (—2) ;ﬁslz (%,—1;1') , (3.4)

whereS;(N) denotes a nested harmonic sum.

Doing the inverse Mellin transform of these sums we find thasé are expressed in terms of
iterated integrals over root-valued alphabets. In totaljyave found that 33 new letters are needed
in the algebraically irreducible representations for thkewlations we have done so far.

or
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The calculation of all these OMEs has allowed us also to ctieckorresponding contributions
to the 3-loop anomalous dimensions. We find perfect agreewiéimthe literature. In the case of
transversity, these have been calculated for the first timinitio.

-0.002

-0.004

5 -0.006

-0.008

-0.01

Figure2: The flavor non-singlet contribution of the Wilson coefﬁdﬂa@s to the structure functioFp(x, Q%)
at 2- and 3-loop order using the NNLO parton distributiondtions [15] in the on-shell scheme fox, =
1.59 GeV (from Ref. [6]).

Having calculated these OMES, the remaining tasks are theotution with the massless
Wilson coefficients and then with the PDFs, in order to obthi contributions to the structure
functions. We have obtained numerical results for the VMiIsoefficientngf2>, L3(2> [8] and
Lc’:{(sz) [6] to 3-loop order. In Figurg]1 the 3-loop corrections by ¥son coefficientLy, is
shown. In the kinematic region probed by HERA it reachet%, i.e. the experimental accuracy
and is therefore of importance. They are larger than the-tmrrections for this quantity, due to
aterm(] 1/zemerging first in the 3-loop corrections, cf. [8]. In Fig{ifeA# show the contribution
of the heavy flavor non-singlet Wilson coefficient to struetéunctionF,(x, Q%) at 2- and 3-loop
order, for different values of?. They turn out to be smaller than 1% in the kinematic region of
HERA. In Ref. [6] we also presented the complete transfaonatoefficients in the VFNS in the
non-singlet case at 3-loop order. Future high-luminosigchines such as the EIC [69] will reach
a much higher resolution fdf,(x,Q?) than HERA. Here all these terms will be of experimental
relevance. Numerical results on the pure-singlet cortioha will be given later this year.

4. Conclusions

Considerable progress has been made recently in the daoutdi the NNLO heavy flavor contri-
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butions to the structure functions in DIS for large value€éf By now, six out of eight operator
matrix elements (and the associated anomalous dimengiame)been completed, and partial re-
sults are available for the remaining two OMEs. This progneas possible thanks to the devel-
opment of new computer algebra and mathematical techredodgbeveral programs have played
a crucial role in these calculations, suchRexluze?2 for the reduction to master integrals, and
Si g, Har noni cSuns, Eval uat eMul ti Suns, SunPr oducti on andOr eSys for sum-
mation algorithms and the solution of difference equatiombese programs and the algorithms
associated with them continue to be developed and refine@ &neounter ever more challenging
problems in this endeavor. The 3-loop heavy flavor Wilsorffaments calculated so far yield con-
tributions toF»(x,Q?) of O(< 1%), cf. [6, 8], reaching the experimental accuracy of the stmec
functionF>(x, Q?) at HERA. We will report on numerical results for further Witscoefficients and
OMEs in the future. The completion of this project is undgnaad will allow us to make more
precise determinations @f; andm, the parton distribution functions, as well as to estabiish
VFENS at NNLO, needed for predictions at hadron collidershsagthe LHC.
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