совокупности, это указывает на большую роль процессов неупругой перезарядки нуклонов ядра кислорода $pp \rightarrow pn^+\pi^-$ и $pn \rightarrow pp^+\pi^-$.

Таблица 3.

Тип частицы	Топология					
	422	322				
<n <sub="">n></n>	0.45 ± 0.15	0.10 ± 0.07				
$<$ n $_{\pi+}>$	0.27 ± 0.09	0.58 ± 0.15				

Средние множественности заряженных пионов в зеркальных топологиях (422) и (322).

Представленные в данной работе результаты еще раз подтверждают наши более ранние выводы о существенной роли α-кластерной структуры ядра кислорода в процессе формирования конечных многонуклонных фрагментов. Для процессов с образованием зеркальных ядер ⁷Be и ⁷Li важно анализировать каналы с образованием заряженных пионов, что позволяет идентифицировать тип первичного нуклон-нуклонного соударения.

ДИССОЦИАЦИЯ ЯДЕР ¹²N С ИМПУЛЬСОМ 2 А ГЭВ/С В ЯДЕРНОЙ ФОТОГРАФИЧЕСКОЙ ЭМУЛЬСИИ

К. Олимов¹⁾, Д. А. Артеменков²⁾, В. Браднова²⁾, П. И. Зарубин²⁾, И. Г. Зарубина²⁾, Р. Р. Каттабеков^{2, 3)}, Н. К. Корнегруца²⁾, К. З. Маматкулов^{2,4)}, В. В. Русакова²⁾

¹⁾Физико-технический институт АН РУз, ²⁾Объединенный институт ядерных исследований, Дубна, Россия. ³⁾Институт Ядерной Физики АН РУз, ⁴⁾Джизакский педагогический институт, Джизак. E-mail: <u>olimov@uzsci.net</u>

Пучок ядер ¹²N получен отбором из взаимодействий первичного пучка ядер ¹²C с импульсом 2A ГэВ/с в ядерной фотоэмульсии. Представленный ниже анализ основывается на просмотре облученной эмульсии по следам первичных частиц с зарядами, визуально оцениваемыми как $Z_{pr} > 2$, на длине около 1088 м. Найдено 7241 неупругое взаимодействие, в том числе 608 «белых» звезд, содержащих только релятивистские фрагменты в угловом конусе до $\theta_{fr} < 11^{\circ}$. В «белых» звездах, которые могли бы быть созданы ядрами ¹²N, выполнены измерения средних плотностей δ-электронов N_δ на следах пучковых ядер и вторичных фрагментов с зарядами $Z_{fr} > 2$.

Исследования кластеризации нуклонов в малоизученном радиоактивном ядре ¹²N, является логическим шагом в развитии исследований кластерной структуры ядер ⁷Be, ⁸B и ⁹C. Ядро ¹²N завершает эту последовательность ядер в цепи реакций в астрофизических процессах быстрого подхвата протонов. Это ядро обеспечивает альтернативный сценарий синтеза изотопа ¹²C.

Для «белых» звезд ¹²N можно было ожидать лидирования каналов ¹¹C + p (порог 0.6 МэВ), ⁸B + ⁴He (порог 8 МэВ) и p + ⁷Be + ⁴He, а также каналов связанных с кластерной диссоциацией ядраосновы ⁷Be. Особенностью когерентной диссоциации ядра ¹²N, в отличие от более легких ядер на границе протонной стабильности, может стать вклад распадов несвязанных ядер ⁸Be и ⁹B. В частности, порог канала ³He + ⁹B_{g.s.} составляет 10 МэВ. Небольшая разница в энергии связи по сравнению с каналами, содержащими фрагменты с зарядом $Z_{fr} > 2$, ведет к предположению о возможной двойственности ядра ¹²N. С одной стороны его основа может быть представлена связанными ядрами ⁷Be и ⁸B, а с другой – несвязанными ⁸Be_{g.s.} и ⁹B_{g.s.}.

Измерение в облученной эмульсии плотности δ -электронов N_{δ} на следах кандидатов ¹²N позволило отобрать 72 «белых» звезды, удовлетворяющих условию $Z_{pr} = 7$ и $\sum Z_{fr} = 7$ [1]. Идентификация следов по заряду позволяет восстановить зарядовую топологию «белых» звезд, созданных ядрами ¹²N. На основе этих данных вклад ядер ¹²N в пучок оценивается в 14 % (без учета ядер Н и Не). Согласно накопленной статистике «белых» звезд, созданных ядрами ¹⁰C и ⁷Be, вклад этих изотопов составляет примерно по 43%. Для изотопов $Z_{fr} > 2$ по Z_{fr} определяется и массовое число A_{fr} .

Для дальнейшего отбора событий когерентной диссоциации, содержащих только фрагменты ядер ¹²N (не «участников» взаимодействия), условие на угловой конус было ужесточено до $\theta_{fr} < 6^{\circ}$. Эта величина определяется «мягким» ограничением на импульс ферми-движения нуклонов. В распределении 45 отобранных событий доля каналов с тяжелыми фрагментами $Z_{fr} > 2$ достигает примерно 2/3, и вклад каналов, содержащих только легкие фрагменты Не и H, остается достаточно значительным. Заметный вклад предельно «хрупкого» ⁸В указывает на «холодную» фрагментацию с минимальным возмущением структуры ядер ¹²N. Неожиданно большой оказалась статистика событий в канале 2He + 3H. Исходя из факта приблизительного равенства вероятности каналов 2He и He + 2H

при диссоциации ядра ⁷Be [2], а также основы ⁷Be в ядрах ⁸B [3] и ⁹C [4], следовало бы ожидать для ядра ¹²N приблизительного равенства вероятностей каналов 2He + 3H и 3He + H.

Распределение числа «белых» звезд по каналам диссоциации с суммарным зарядом фрагментов $\sum Z_{fr} = 7$ и измеренным зарядом пучкового следа $Z_{pr} = 7$ с условием отбора $\theta_{fr} < 11^{\circ}$ (72 события) и $\theta_{fr} < 6^{\circ}$ (45 событий) приведено в таблице.

$ heta_{fr}$	He+5H	2He+3H	3He+H	⁷ Be+3H	⁷ Be+He+H	⁸ B+2H	⁸ B+He	C+H
< 11°	9	24	2	10	9	11	3	4
< 6°	2	12	2	5	8	9	3	4

Существенным вопросом является вклад среди фрагментов $Z_{pr} > 2$ распадов нестабильного ядра ⁸Be_{g.s.} из основного состояния. В случае ядра ¹²N в распределении по углам разлета Θ (He + He) для «белых» звезд 2He + 3H и 3He + H найдены два кандидата в распад ядра ⁸Be из основного состояния 0⁺. Таким образом, вклад ядер ⁸Be оценивается на уровне 4 ± 2 %. Для соседних ядер ¹²C [5], ¹⁰C [1], ¹⁰B[6] и ¹⁴N [7] он составлял порядка 20%. Однако, данные по Θ (He + He) не исключают возможности диссоциации по каналу 2He через распад ядра ⁸Be 2⁺ из первого возбужденного состояния 2⁺.

При поиске аналогии с ядром ⁹С путем замены одного из внешних протонов в системе $2p + {}^{7}$ Ве на α -кластер возникает затруднение, состоящее в следующем. Вероятность каналов, для которых требуется высокоэнергетическое расщепление α -кластера в ядре 12 N, примерно совпадает со значениями для каналов, которые можно ассоциировать только с отделением α -кластера. Повидимому, «простая» картина ядра 12 N как структуры $p + {}^{7}$ Be + ⁴He является недостаточной. Скорее, кластерная структура основного состояния ядра 12 N предстает как сложная смесь состояний ядра-основы 7 Be и возможных конфигураций протонов и легчайших ядер.

Литература

- 1. Р. Р. Каттабеков, К. З. Маматкулов и др., ЯФ 73, 2166 (2010).
- 2. Н. Г. Пересадько и др., ЯФ 70, 1226 (2007) [N. G. Peresadko et al., Phys. Atom. Nucl. 70, 1266 (2007)]; nuclex/0605014.
- 3. Р. Станоева и др., ЯФ 72, 731 (2009) [R. Stanoeva et al., Phys. of At. Nucl. 72, 690 (2009)]; arXiv: 0906.4220.
- 4. D. O. Krivenkov et al., Phys. Atom. Nucl. 73, 2103 (2010);arXiv:1104.2439
- 5. The BECQUEREL Project <u>http://becquerel.jinr.ru/</u>
- 6. M. I. Adamovich et al., Phys. At. Nucl. 67, 514 (2004);arXiv:nucl-ex/0301003
- 7. Т. В. Щедрина и др., ЯФ 70, 1271(2007) [T. V. Shchedrina et al., Phys. Atom. Nucl. 70, 1230 (2007)]; arXiv: nucl-ex/0605022.

РАСЩЕПЛЕНИЕ ЯДЕР ¹²С ПОД ДЕЙСТВИЕМ НЕЙТРОНОВ С ЭНЕРГИЕЙ 14 МЭВ.

Р. Р. Каттабеков^{1,2)}, Д. А. Артеменков¹⁾, В. Браднова¹⁾, П. И. Зарубин¹⁾, И. Г. Зарубина¹⁾, Н. К. Корнегруца¹⁾, К. З. Маматкулов^{1,4)}, К. Олимов³⁾, В. В. Русакова¹⁾

¹⁾Объединенный институт ядерных исследований, Дубна, Россия. ²⁾Институт Ядерной Физики АН РУ, Ташкент, Узбекистан. ³⁾Физико-технический институт АН РУ, Ташкент, Узбекистан. ⁴⁾Джизакский педагогический институт, Джизак, Узбекистан.

Ядерная эмульсия, облученная нейтронами с энергией свыше порога реакции ${}^{12}C(n,n')3\alpha$ позволяет изучать ансамбли α -частиц, рожденных при расщепления ядер углерода из состава эмульсии. В настоящем эксперименте моноэнергетичные нейтроны генерировались в реакции слияния дейтронов с энергией порядка сотен КэВ с тритонами d + t \rightarrow n(14.1 MэB) + α . Результаты такого исследования позволяют получить фундаментальные сведения о вероятностях различных спиновых состояний кластеров в ядрах.

Ядро ¹²С является признанной «лабораторией» для развитий концепций α-частичной кластеризации в ядерной материи с учетом квантовых эффектов. Существует возможность присутствия в основном состоянии ядра ¹²С_{g.s.} пар α-кластеров, имеющих «скрытый» спин S = 2 (Dволна). Подходящей базисной конфигурацией и в этом случае является первое возбужденное состояние ядра ⁸Be₂₊ со спином и четностью S = 2⁺. В классическом подходе, можно представить противоположно направленное «вращение» двух α-кластеров с угловыми моментами S = 2 вокруг общего центра, представленного третьим α-кластером. Тогда остающаяся комбинация «более удаленных вращающихся» α-кластеров должна иметь угловой момент, соответствующий бы основному состоянию ядра ⁸Be_{g.} со спином и четностью S = 0⁺ (S-волна). В итоге суперпозиция парных состояний α-кластеров ведет к нулевому значению спина ¹²С_{g.s.} Конечно, эта упрощенная