ЭКСПЕРИМЕНТАЛЬНОЕ НАБЛЮДЕНИЕ КВАНТОВОГО РАЗМЕРНОГО ЭФФЕКТА ПРИ ИССЛЕДОВАНИИ ОПТИЧЕСКИХ СВОЙСТВ ОСТРОВКОВЫХ ПЛЕНОК ВИСМУТА.

Аббосов Б.А., Бабков В.К., Салихов Т.Х., Свяжина М.В. Физико-Технический ин-т АН Республики Таджикистан, ТГПУ, Душанбе

Известно, что физические свойства пленок отличаются от свойств массивного материала, если толщина пленки (t) мала по сравнению с характерным параметром, например, длиной свободного пробега электронов (L) [1]. При переходе к t порядка де-бройлевской длины волны электрона (λ) возможно создание материалов с принципиально новыми свойствами и в свойствах электронов проявляется квантовый размерный эффект (КРЭ). Спектр энергии злектронов разбивается на подзоны, и в спектрах поглощения КРЭ проявляется на фоне прямых межзонных переходов в виде тонкой структуры [2]. Ві является "классическим" материалом для исследования КРЭ. Однако, спектральное наблюдение КРЭ (наиболее полное) в Ві затруднено малой шириной запрещённой зоны. Можно ожидать, что для плёнок Ві и вдали от края поглощения, в видимой и ближней ИК областях спектра, также должен проявляться КРЭ. Целью настоящей работы являлась экспериментальная проверка этого предположения. Расчеты энергии прямых межзонных переходов (ПМП) для Ві выполнены в [3]. Основными условиями для наблюдения КРЭ являются: однородность пленки по толщине, совершенство структуры и малое размытие уровней энергии электронов (кТ) по сравнению с интервалом (§E) между подзонами: кT<<§E, что выполняется при Т_б 4К. Пленки Ві получают применяя технологию МЛЭ с "hot-wall", (температура подложек " 250°) [4]. Температура образца при съёмке спектров 4-10 К. Перепад температур ~ 500К и разница ТКР вызывают искажающие зонную структуру напряжения, минимальные при островковой структуре пленки, возникающей на SiO, -подложках при ts 25нм (островки коалесцируют вдоль общего направления).

Спектры получены на спектрофотометре "Спекорд М-40" для

энергий 1,36-6,20 эВ.

В спектрах присутствуют полосы, связанные с рассеянием. Их положение рассчитывалось по теории Міе и зависит от размеров и формы островков. Поляризационные измерения позволяют выделить компоненту напряженности вектора электрического поля световой волны, перпендикулярную к плоскости плёнки (E₁), что обеспечивает направленность движения электронов в поле волны и исключает "размазывание" КРЭ по толщине. Пространственное положение образца в криостате жестко фиксировано, но не является строго определённым относительно направления измерительного луча.

Поэтому, изменяя угол анализатора (α) с шагом δ^{α} , находят значение а, при котором Е_ максимально. Тогда изменение проекции квазиимпульса электрона на нормаль к плоскости плёнки будет максимально, как и, следовательно, изменение амплитуды осцилляций КРЭ. Поляризационные измерения для разделения полос ПМП и выявления структуры КРЭ проводились при температурах 4,1-77 К (анализатор - кальцит, поляризатор - сам образец) приδ^α =50 в диапазоне 0⁰≤ α ≤180⁰ (тогда нуль анализатора выбирается произвольно). Тонкая структура КРЭ в виде осцилляций наблюдалась на фоне полос ПМП и полос рассеяния, обусловленных островковой структурой. Амплитуда осцилляций КРЭ уменьшалась при нагреве от Т_{тіп}≈7 К системы плёнка-подложка вследствие поглощения энергии измерительного луча вплоть до достижения равновесной температуры (Т.). При 78 К осцилляции КРЭ практически неразличимы. Оценка Тр в зависимости от условий эксперимента даёт: 11К <Tp< 42К. Результаты измерений в

11

Измеренное значение энергии, эВ	Расчетное значение, ЭВ	Интерпретация перехода [3]	Расхождение эксперимента с расчётом, %	Дополнения
5,52	5,89	$X(2) \rightarrow X^{+}(1)$	7	$T_p(Y\Phi) > T_p(B)$
4,37	4,42	$\Gamma_6^+(2) \rightarrow \Gamma_{45}$	1,2	Τ _p (УΦ)
3,95	4,08	$\Gamma^+(2) \xrightarrow{\rightarrow} \Gamma_6(1)$	3	$T_p(Y\Phi)$
3,46	- 7.57	Плазмон	-	Резонанс Міе G.
3,20		Плазмон	-	Резонанс Міе G.
2,90	2,85 ([⊥])	$\Gamma_6^+(1) \rightarrow \Gamma_{45}^-$	1,7	
2,86	2,85 (^{-L})	$\Gamma_6^+(1) \rightarrow \Gamma_{45}^-$	0,31	$T_{p}^{\approx}78 \text{ K},$ $\alpha = 110^{\circ}$
2,83	2,79	$L^+(3) \rightarrow L^-(1)$	0,90	
2,694	2,6905	$L(3) \rightarrow L^{+}(1)$	0,12	
2,64	2,79	$L^+(3) \rightarrow L(1)$	1,2	Взято среднее расчетное значение энергий переходов
	2,69	$L(3) \rightarrow L^{-}(1)$		
	2,57	$T_{6}(2) \rightarrow T_{6}(1)$		
	2,56	$\Gamma_{6}^{+}(2) \Gamma_{6}^{-}(2)$		
	2,56 (??)	$\Gamma^+_{45} \rightarrow \Gamma^{45}$		
	2,51 (¹)	$T_6(2) \rightarrow T_{45}^+$		
2,34	2,27 (1)	$\Gamma_{45}^+ \rightarrow \Gamma_{6}(2)$	3	
2,08	-	Плазмон	-	Резонанс Міе G
1,773	1,76	$T_6(2) \rightarrow T_6^+(1)$	0,7	Разрешение
1,754	1,75 (±)	$T^+_{6}(2) \rightarrow T^{45}$	0,2	При Т _р , α=20°
1,475	1,47	$L^+(3) \xrightarrow{\rightarrow} L^-(2)$	0,4	South and the state of the

Таблица Энергии максимумов поглошения в спектрах островковых плёнок Ві

сопоставлении с данными [3] представлены в таблице.

[1] Комник Ю.Ф. Физика металлических пленок. М.: Атомиздат. 1979. с. 263.

[2] Коган В.Г., Кресин В.З.- ФТТ. 1969. т.11. в.11. с. 3230-3235. [3] Дорофеев Е.А., Фальковский Л.,А. - ЖТЭФ. 1984. т. 87. в. 6 (12). с. 22202-13.

[4] Бабков В.К., Салихов Т.Х., Свяжина М.В.- Вестник ТГПУ. 2001. № 1. с. 17-20

12