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I Introduction
The purpose of these notes is to give an account of some 

attempts at interpreting the observed values of nuclear magnetic 
moments. There is no attempt at a complete summary of the field 
as that would take much more space than is used here. In many 
cases the arguments are only outlined and references* are given 
for those interested in further details.

A discussion of the theory of nuclear magnetic moments 
necessitates many excursions into the details of the nuclear 
models because the magnetic moments have a direct bearing on the 
validity of these models. However the main emphasis here is on 
those features which tend to explain the magnetic moments and 
other evidence is not discussed unless it has a direct bearing 
on the problem.

In the first part of the discussion the Shell Model of 
the nucleus is used, as this model seems to correlate a large 
body of data relating to the heavier nuclei. Included here are 
the modifications proposed to explain the fact that the 
experimental magnetic moments do not fit quantitatively with the 
exact predictions of the Shell Model. The next sections deal with 
some of the more drastic modifications introduced to explain the

References are quoted by the author’s name and the last two digits 
of the year in which the paper appeared. The list of references 
is arranged in alphabetical order.
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large nuclear quadrupole moments and the effect of these 
modifications on the magnetic moments. Finally we turn to more 
detailed investigations of the light nuclei, in particular the 
C on 3ugate nuc1e i.



-  3 -

II Definitions and Basic Formulae
(A) Magnetic Moment and g-Pactor

The classical interaction energy between a current 
distribution I and a slowly varying (in space) electromagnetic 
field includes a term m*H, where H is the magnetic field at 
the origin and in is the magnetic dipole moment density of the 
current (Rosenfeld i+7 page 390);

Quantum mechanically in becomes the magnetic moment operator. 
Setting the z axis in the direction of H, the magnetic moment 
of the system is defined as the expectation value of the z 
component of the magnetic moment operator in the state of 
maximum magnetic quantum number. It is always proportional to 
the total angular momentum I and the proportionality constant is 
called the g-factor;

magnetic moment = puj.Q = guQI
©tiwhere (iQ = 1 magneton = 75̂  ,

The magnetic moment is fixed by giving the value of |i 
fying the type of magneton, which depends on the mass 
particle.
(B) Magnetic Moment of a Single Particle

For a particle with charge e and mass M the 
is given by I = ev = ^ p, where p is the.momentum of

and speci- 
of s ome

current 
the particle.
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Then the orbital magnetic moment operator is given by the equation

where X

(with ei 
magnetic

= 2c (r x I) - 2Mc ^  x p) ~ 2Mc ** " ^o^ ’ 
is the orbital angular momentum operator (divided by h) 

If in addition the particle has intrinsic spin s 
genvalue s = y) the Dirac theory gives an intrinsic 
moment operator (Dirac 1+7, page 265)

ras = ™  s = 2pcs (s = \ a of Dirac).

When there is no orbital motion the magnetic moment consists 
only or the spin part and the total angular momentum is J = s
so that.

.-.ra. = < 2 M 0sz>  = 2f*0B = Uo
and th_e Dirac spin g-factor is given by g = 2. The electronO
fits very well into this picture except- for small radiative 
correonions (Schwinger 1+9, Luttinger hi). The neutron and proton, 
however, are found to have anomalous magnetic moments as given 
in table J (Klinkenberg 52, Mack 5C).

The magnetic moment operator for a nucleon in an 
orbit is ihen given by the equation

s = Sx  + Sŝ 0S,

whe re 5 = 3L + s and j = X  i i
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We have introduced to take care of the fact that the neutron 
has zero charge and hence zero orbital moment (g^ = 1 for a 
proton, = 0 for a neutron). The appropriate gg value for 
the nucleon is given in table I. Using this operator:

- l i f  = %  < ^ >  ««. < 0

At this point we make use of a formula which is very- 
useful in calculating magnetic moments and which will be used 
again. If J = J., + Jg arî  J-j and 3^ are angular momentum 
operators it can be shown (Condon & Shortley 35> page 6b) that

3 ( 3 + i ) + 3 1 ( 3 1+ i ) ' - 3 2 ( 3 2+ '0  

2 3 ( 3+1)
J. ,. (a)

if 3> 3-| > 3Z are all good quantum numbers. Then the
magnetic moment of a nucleon in an orbit is given in nuclear
magnetons by

p =
%

j( j+l)+i(X+l)-f 
2j(3+1) 3 + g,

3 ( 3 + l ) + f - K i + l )

23 (3+1 )
3 • • • (3)

where 3 = i v.
The g-factor is obtained as g. = *4 . Prom this point on allJ J
magnetic moment values will be quoted in nuclear magnetons.
Table II gives the magnetic moments and g-factors for nucleons 
in various single particle states using both the measured values

s*and the Dirac values for g



H I  Magnetic Moments on the Individual Particle Model 
(A) Sven-Even Nuclei

Sven-even nuclei are those with an even number of protons 
and an even number of neutrons. It is a well known fact (Mack 50) 
that these nuclei have zero spin and consequently zero magnetic 
moment. This lends weight to the assumption that in the ground 
state the spins of pairs of protons or neutrons are anti-parallel 
and that in some way the orbital contributions of these pairs to 
the total angular momentum ten <s to cancel. Prom the point of view 
of L-S coupling and the liquid drop mo,cl * his is reasonable 
because the ground state of a spinning drop might he expected to 
have zero angular momentum. In the alpha',particle model the nucleon 
orbits are postulated as localized in space and a net angular 
momentum means that on3 of the alpha particles is contributing 
kinetic energy (Gamow & Critchfield U9) so that this would not be 
the ground state of the nucleus. Calculations based on the Hartree 
individual particle model (Peenberg & Phillips 37b) indicate that 
as a general rule the ground state has the lowest total orbital 
angular momentum. Thus we may qualitatively account for the lack 
of nuclear spin in even-even nuclei in all of the models. At 
worst we can take it as am assumption for the analysis which

- 6 -

follows.
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(B) Odd Nuclei - The Schmidt Lines
The Basic assumption here is that there is no coupling 

Between the odd nucleon and the core. Since the core is equi­
valent to an even-even nucleus it has spin zero and hence the 
odd nucleon is entirely responsible for the spin (i) and 
magnetic moment (p) of the nucleus.
Thus; I =i i |
and By formula (3) for the magnetic moment of a spin-half 
particle in an orBit we have the two cases;

P  = M-q  + ( !  “  i )  , I = JL + i

U ^1+1^ 1 + Sti( I+o) I - *
where and are the appropriate values for a proton or a 
neutron (given in table I), Plotting n vs. I for the odd proton 
and odd neutron cases separately we get two pairs of lines 
(labelled By S in figures I and II). These are called the Schmidt 
lines after the man who first derived them (Schmidt 37). Using 
the Dirac values for5 the spin g-factors we obtain another pair 
of lines which de Shalit (51)calls the Dirac lines. These lines 
fall between the Schmidt lines and are labelled by D in figures I 
and II. The points for plotting all of these lines are those 
tabulated in table II.
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The experimental values of p. for odd nuclei lie in 
between the Schmidt and Dirac lines with very few exceptions 
(Figure I), whereas on the strict single particle model using 
the free particle gg values they would be expected to fall on 
the Schmidt lines. Two conclusions are usually drawn from this 
distribution:

(1) The total spin of these nuclei is indeed one-half, as 
assumed.

(2) A value of X can be unambiguously assigned to the 
single particle state of the odd nucleon from the measured spin 
and magnetic moment of the nucleus because the magnetic moment 
is always in one or the other of the regions corresponding to
SL = I - h

The shell model of the nucleus (Feenberg & Hamrnack kS; 
Mayer k9, 50; Nordheim 1,9) is usually constructed by the use of 
these j (=1) and k values for the specification of the single 
particle states. This model correlates a wide body of nuclear 
data including the magic numbers, beta decay transitions and 
isomeric states, and this lends support to the above procedure. 
The fact that the jj, do not fall on the Schmidt lines then remains 
to be explained.

All p. values used are taken from Klinkenberg's review article
R.M.P. 2k, 63, 195?.
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(C) Odd-Odd Nuclei - 3-3 Coupling
The assumption here is that we have a spinless even- 

even core and two nucleons (a neutron and a proton) acting as 
individual particles. Using the shell model assignments for 
these particles we can calculate the magnetic moment from the 
measured spin "by using 3~3 coupling (Feenberg 2+9, Klinkenberg 52).

In table III the calculated p values are compared to the measured

the table we see that in these cases the calculated and measured

agreement is much better than in the case of the odd nuclei and 
the Schmidt lines. This is somewhat puzzling because the single 
particle states were obtained from these same Schmidt lines.

where gn and are taken from table TI and depend on the states 
of the neutron and proton respectively.

Using formula (a) we obtain

ones. Note the particular simple form of p when 3- = 3-q- From ,n p

values agree much better than when 3  ̂^ 3 . In addition, the



10 -

The puzzle can "be resolved (Talmi 51) if1 the assumption is male 
that the deviations from the Schmidt lines are due to quenching 
of the spin g-factors, i.e. inside nuclear matter the spin 
g-factor of a nucleon is not the same as it is in free space hut 
lies somewhere between the Dirac value and the measured value in 
free space. In the case discussed above, p. = v(gn + & )» and 
this is the same as the free particle value because the quenching 
is equal and opposite for neutrons and protons.

Mizushima and Umezawa (52) have extended the 3-3  

coupling model by considering closed shell ± 3 nucleons, the 
closed shells being those given by the shell model (Klinkenberg 52). 
Assuming that isotopic spin is a good quantum number and using 
group theoretical methods they have obtained the values shown in 
ruble IV„ For closed shell - 1 nucleon they obtain the Schmidt 
values and in addition the success with odd-odd nuclei is
pre served.

jjC(0) Interaction Moments and Quenching
One of the attempts at explaining the deviations from 

the Schmidt lines while retaining the single particle interpretation 
involves the possibility of interaction magnetic moments. It was

The term interaction moment has been adopted in preference to 
the usually used term, exchange moment, because it has more 
general validity (Austern & Sachs 5 1).
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first pointed out by Siegert (.37) that the existence of charge 
exchange forces between nucleons together with the differential 
law of conservation of charge requires that electric currents 
oust flow in the space between interacting protons and neutrons. 
These exchange currents can interact with a magnetic field and 
this interaction implies a magnetic moment which is additional 
to the spin and orbital magnetic moments.

A model of this effecJ can be constructed on the basis 
of the meson theory of nuclear forces. If the nuclear force 
is indeed due to a charged meson field surrounding the nucleons, 
then it is trie virtual exchange of these charged mesons between 
nucleons which constitutes the exchange current and is responsible 
for at least part of the nuclear force. These charged mesons can 
also be used to qualitatively explain the anomalous magnetic 
moments of the proton and neutron. The physical nucleon is assumed 
to consist of a Dirac particle surrounded by a cloud of charged 
mesons and it is this cloud which produces the anomalous part cf 
the magnetic moments. However, detailed meson theories have not 
yet been able to explain quantitatively either the nuclear force 
cr the. anomalous magnetic moment.

It turns out (Osborne and F -Iciy 50) that the exchange 
force does not completely determine the exchange current. Only 
the longitudinal (irrotational, zero curl) part is uniquely
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determined while the transverse (adenoidal, zero divergence) 
part depends on more detailed assumptions concerning the theory 
used to calculate the exchange current. In particular it 
depends on which meson theory is used.

Miyazawa (5i) has calculated the interaction moment 
contribution for heavy nuclei, approximating the core by a Fermi 
gas. The transverse part of the moment was calculated using 
symmetrical pseudoscalar meson theory and the longitudinal part, 
•which depends directly on the exchange force, was calculated 
using the phenomenological potential of Christian and Hart (50).
He was able to match the general trend of the deviations by a 
small readjustment of the constants in his expressions.

It is possible to proceed without making any reference 
to the exact nature of the meson theory by using the following 
device (stem 1+9) . In deriving the two body interaction from 
meson theory a function of the interparticle distance related 
directly to the more detailed properties of the theory is first 
derived and then various operations are applied to it to determine 
the spatial dependence of the central and tensor parts of the 
interaction potential and the spatial dependence of both the long­
itudinal and transverse parts of the interaction moment operator. 
Starting from a phenomenological interaction potential we can invert 
the operation and calculate the above function, i.e. we get, in
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effect a phenomenological description which in some way includes 
the details of a meson theory. This function can then he used to 
determine the transverse part of the interaction moment.
Preliminary calculations (Villars, unpublished) using the Fermi 
gas model for the core have given interaction moments which are 
too small hy a factor of ten and specialization to a finite 
nucleus does not change this result.

Russek and Spruch (to he published in the physical 
review) have carried the phenomenological method a step iarther.
By invariance and symmetry considerations one can derive the most 
general interaction moment operators which can arise from a charge 
exchange potential (Oshorne & Poldy 50). Under the restriction 
that these operators behave properly under time reversal (Kynch 51) 
and with the arbitrary requirement that they be derivable from a 
second order meson calculations only three contributions remain.
The two transverse contributions are determined only to within 
arbitrary functions of the interparticle distance. Using Gaussian 
wells with the usual nuclear range for all three space functions 
and shell model harmonic oscillator wave functions for the particles, 
Russek and Spruch were able to fit the general trend of the 
deviations by selecting proper strengths for the three contributions.

In addition they were able to qualitatively confirm 
other regularities among the magnetic moments. Their expressions 
for the interaction moments of odd proton nuclei are proportional



to the neutron density so that the addition of two protons to an 
odd proton nucleus lowers the neutron density and hence gives a 
smaller interaction moment, provided the X and j of the odd 
proton are not changed by the addition* A similar situation 
exists for the odd neutron nuclei. The experimental evidence 
shows that in most cases the addition of two neutrons to an odd 
neutron nucleus or two protons to an odd proton nucleus tends to 
push the magnetic moments towards the Schmidt lines (table V).
The above mechanism also explains why odd neutron nuclei tend to 
deviate less from the Schmidt lines than do odd proton nuclei 
with the same X and j and comparable A.

There is another way of looking at interaction moments 
which has an interesting extension. This is the quenching 
mechanism (Bloch $1, de Shalit £l) already discussed in connection

•**v i
with j-j coupling. The meson cloud around a nucleon is the cause 
of its anomalous magnetic moment and when other nucleons are present 
the clouds are modified so that the magnitude of the moment of a 
single nucleon is less than its value in free space. This would 
cause the magnetic moment to fall between the Schmidt and Dirac lines 
as is observed. It has been shown by Miyazawa (5>l) that the 
quenching effect is equivalent to the interaction moment for the 
usual type of meson theory. However additional quenching may be 
obtained using nonlinear- meson theories (Schiff £l) and it is 
believed (Bloch £l) that this may be important.

“ llj- “



V Modification of' the Ino.3penci.ent Particle Model
(A) Evidence

There are two reasons why it seems necessary to modify 
the strict independent particle model. These have to do with the 
seemingly random scatter of the experimental points between the 
Schmidt lines (interaction moments have only been able to give the 
general trend) and the large quadrupole moments (q ) of many nuclei. 
Most of the modifications so far have dealt with Q.

The quadrupole moments of heavy nuclei, especially 
those near Z = 73* cannot be accounted for by a single particle 
model. In some cases the measured values are too large by as much 
as a factor of thirty-five and even in nuclei with closed shell 
± 1 nucleon Q is sometimes several times larger than the maximum 
value obtainable from a single particle in an orbit (Townes, Foley 
& Low 59). This suggests that as many as 30 protons must be 
responsible for Q, and points towards some sort of distortion of 
the core (Bohr 51 a). In this event it is possible for the core 
to have angular momentum and so contribute to the magnetic moment.
(B) Liquid Drop Model

If v/e mate the simple assumption that the nucleus acts as
a liquid drop with a uniform charge density we immediately run into
difficulty. By direct classical calculation the magnetic moment
of a spinning drop is given as u = | I ( ,Vay 39) which is the rightA
order of magnitude but is by no means as detailed as necessary.

- 15 -



In addition, since a spinning drop has the form of a pancake, 
it does not predict positive quadrupoie moments which are observed 
in some cases.

It has been pointed out (inglis 33) that if we assume 
that the orbital angular momentum is shared by many particles as 
in the liquid drop model, effective orbital g-factors of 1/3 for 
the neutron and 7/3 for the proton give lines on the Schmidt 
diagram which fit the general trend of the data, but there are no 
convincing arguments to justify this. Margenau and Wigner (i+C) 
adopted the pure liquid drop model value of Z/A for both neutron 
and proton orbital g-factors but this results in lines which do 
not come as close to the data as do the Schmidt lines.
(C) Spheroidal Model

It should not be necessary to abandon completely the 
individual particle model because of its many successes. We can 
retain the single particle interpretation provided the core is 
allowed to contribute some of the quacrupole moment. This can be 
achieved, on the basis of the shell model by assuming that the 
average potential for the nucleons has a spheroidal shape (Rain­
water 50). Then for odd nuclei the core will also have a

)jcspheroidal shape, contributing to the quadrupoie moment and also 
to the magnetic moment by interaction with the odd particle.

The nucleus has no electric dipole moment or magnetic quadrupoie 
moment, hence there is no confusion.



Preliminary calculations have "been made hy Foldy and 
Milford (5C) assuming that the odd particle polarizes the core, 
giving rise to surface waves. This causes an exchange of angular 
momentum between the core and the particle and the results are an 
improvement on the Schmidt lines except for I = ^ and I > 5/2.
The exact significance of this calculation is not clear "because 
of the approximations.

If we ignore the origin of the core deformations and 
just quantize the angular momentum in analogy with molecular 
structure (Bohr 51a) we obtain some interesting results. Assuming 
that the shape of the core changes slowly with respect to the 
single particle motion and that the nucleus does not rotate as a 
rigid body (to avoid low lying excited states) there are several 
possible binds of coupling between the orbital and spin angular 
momenta of the single particle, the angular momentum of the core 
and the total angular momentum. Most of these give some improve­
ment on the Schmidt lines and at the same time allow for a large 
quadrupole moment. In particular if the orbital angular momentum 
of the single particle is coupled to the angular momentum of the 
core to give a total orbital angular momentum L, and this is then 
added to the spin s of the single particle, we arrive at some­
thing very close to the Schmidt values while retaining our 
explanation of the large quadrupole moments. The other coupling 
cases give lines which are qualitatively somewhat better chan the 
Schmidt lines but of course do not account for the scatter of the 
points.
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(D) Mixture of States &  - I z %

We coaid assume that the reason the points lie "between 
the Schmidt lines is that there is a mixture of the single
particle states of opposite parity / = I ± £
This would require amhiparity of the core and in addition does 
not agree with the shell model which demands a large energy 
difference "between the two states. In spite of these arguments 
Schawlow and Townes (51) have considered this assumption for 
nuclei with Z < 50 where one might assume that coulomb effects 
are small so that neutron and proton wave functions are similar. 
Hence for the odd nuclei with either Z or N equal to some given 
odd number one might expect that the spin I would he the same 
and that the magnetic moments would lie at the same fractional 
distance between the appropriate Schmidt lines. This in fact does 
occur for the sets of nuclei, with Z or N equal to 5? 13, 15? 17? 
29, 37, 1+9, to within £ 0.1 n.m. and on this "basis Schawlow and 
Townes predict some magnetic moments which have not yet been
measured (table VI).
(3) Remarks

Several models have been able to qualitatively account 
for the general characteristics of the data on magnetic moments 
of heavy nuclei but none of them offer any explanation as to the 
cause of the scatter of the points. It seems that this depends
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on the detailed nature of' the nuclear wave functions and hence 
on the exact form of the nuclear forces. The theory of exchange 
moments is the only one which can make use of these wave functions 
and so it seems this idea holds the most, promise although we must 
certainly include something of the nature of a spheroidal core 
to give agreement with the large measured quadrupole moments. 
Probably a combination of all these possibilities with a betler 
understanding of the theory behind the nuclear two body force will 
be necessary before xact quantitative agreement is achieved. In 
a^uition there is always the possibility that it may be necessary
to b r ing in man/ body forces as exemplified by non-linear meson 
theories.

VII Light Nucln-i
(A) Conjugate Nuclei

A pair of odd nuclei of the same Mass number (A) are 
s^id to be conjugate if the number of neutrons in one is equal to 
the number Qf protons in the other and vice versa. That is to say 

■ “hrn a nucleus into its conjugate by changing all neutrons 
10 pr0ij0n8 and all protons to ne .irons. It is immediately seen 
that nuclei with Z=N=A/2 are self conjugate.

for conjugate nuclei it is possible to obtain a relation 
or the sum of the two magnetic moments if the usual light nucleus 
assumptions are made.
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(1) The coulomb force is negligible compared to nuclear 
forces.

(2) The nuclear forces are charge independent.
Under these conditions the wave functions of two

conjugate nuclei should be identical, which means their Spin (I) 
should be the same„ With this in mind we may-write the magnetic 
moments in their most general form (Sachs ^6).

where gairr and are the spin g-factors of the proton and neutronoTT 0 V
respectively. Since the wave functions of 1 and 2 are the same

(m+p2) = / (
%

7r s&7r TT + gSV 1 0
%

+ O S ) (1 )
Nov/ the nuclear spin is I = L + 9 and by Algebraic

rearrangement
(M-i +m-2) = Ki+g8v+gS7r) < ( M ) Z >  + Ki-gsv-gS7r) < J l -s )z^> 

s ( ?+Ud°) I + (^d. 5 SZ / >i’ ^d = ^^gS7T+gSV̂
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and using the formula (a) separately on L and Sz z

(^1+fi2) = H +Ud°) I + (•1;- ud° ) -  s2>  Y^ITTy ^

Now we expand the common wave function of the nuclei in terns of 
eigenfunctions of L and S.

¥ =
r

r ¥^LS LS 5 ) Ic !2 -  1L> CL3 " 1LS
(3)

\~r ■- fTt ri.o VV LiO X o CLS S C u'llesn 1 = Il-S ' (L+S) ,
Then

< ’L^ - 32>  = l'L s ' 2
LS

L(L+1) - S(S+1) 1

;/hichf to.;“. t with (2) and (3) giv-r

M, +hQ) „ \UI(I+1) 1 r'2' 
21 - GLSLS

I(I+1)+L(L+1)-S(S+1)

(4)
In this expression P + p̂  , is a measureds 'if sv ■sv

guantity a s i s the s p i n .
to the proportions Of th:
t ’is ■■ ■ c.1c ■ 1 i- the ti a ui-i <./.
convcnien i to ,vor’: in th

■'LS'



22

(B) The Deuteron H2
This is the simplest example of a self conjugate 

nucleus. Using the measured values 1 = 1  and = 0.357:.g in 
equation (U) with p̂  = p? = p^ we obtain the relation

0.235g = 61021I2 + 2 f C11\2 + Ulc1cl2 + 0lc01!2 (5)

Notice that this 
he obtained from

equation doe
V lcTJ 2 . 1'LS

i i ps not involve iCQ1' , which can
once the others are known.

It is well known that the deuteron ground s+ute is 
mostly and since parity is a good quantum number we must 
rule out the ^ a n d  P̂., states and set = !cic!2 = C.
Then relation (5) requires that

= .03931 = fraction of JD̂  state .
Note that if pn = (j.̂9, the sum of the neutron and 

proton magnetic moments, we would have obtained the result that 
there is no D state present. In fact the first prediction of 
this non-additivity was given by Raritu and Schwinger (hi) in 
connection with the quadrupole moment of the deuteron which 
would be zero if then were no D state present. Pitting the 
measured quadrupole moment they required that the fraction of 
D state be C.039 which agrees very well with the value obtained 
above. Later more extensive calculations have not changed this
estimate.
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However it is thought that this agreement may "be largely 
fortuitous (Bloch. Nicodemus & Stauh h8) because relativistic 
effects resulting from the motion of the nucleons could cause 
deviations from additivity in the same direction and of comparable 
magnitude as those introduced through the admixture of D state.
The estimates vary widely (Margenau !rO, Caldirola lp5, Sachs h7b, 
Primahoff h'7, Breit t-7. Breit A Bloch I<.7) depending on the 
assumptions about the neutron proton force, and thus no definite 
conclusions can be drawn.
(C) Other Self Conjugate Nuclei

Other light nuclei which might be expected to obey the 
conditions necessary for application of formula (1;.) are
Li6, B1C '-ill cl

Nucleus
Li6

I
1

g
, 8219

L lcTq! 2 1 (1 +1 ) +l ( l+i ) -
LS •L‘° L

.610 3S., \  3P 1 \
310 3 - 600. 17.676 3n 3F 3P d3 * 3 F3 G3

1 ii N ^ 1 • i+C365 5.016 3S 1P 3P 3d b1 M  *1 D1
1 <7e make the assumption that states of total spin higher

than S = 1 are not present. This is equivalent to saying that 
at most two particles are responsible for the total spin while 
all the other spins cancel out. Then using (h) one can obtain
upper limits for the percentages of the various states by setting 
the others tern i: orarily erual to saro (Sachs 1.6).



This information might he useful in conjunction with other
details of the nuclear wave functions.

3 3(D) The Conjugate Pair He - H
3 3The pair He - H is the simplest example of conjugate 

nuclei. The measured quantities are I = £ and + = -8512,

which, on using ecuation (1+) , gives . *

0.11,

C\ 2
C0 3  ̂52 G1 2. ’ ’2

+ 2 c,. ±1 , o

If we assume that j Cr j_j "* is the largest component and set

we arrive at
0

C0 3 i 2 = .037r ~ fraction of f''Bi state
0  2

which agrees with the value estimated by G-erjuoy & Schwinger (1+2) 
by fitting the binding energy variationally.

Making symmetry assumptions about the triton (H )
wave functions Sachs & Schwinger (+6) derive : -

H.(H3) - - r C2 3|^ (Pn + 2u - h) = 2.711+ n.rn.P

n 37g,u(He3) = p 

where we have used j Cg 3_

2 I 2,f-
t 9

ST

p

(-2+1 + q - 1) = - 1.861 n.m.n p

= C.37/- as estimated above.



As is expected these two values add up to the correct sum 
( p(H^) + jx(Hê ) = -853 ) hut their individual values are out by 
1 0.265 n.m. The measured value of p(Er) is greater than |x and 
not less as is predicted here.

This discrepancy might he due to large admixtures of 
and 2F states (Sachs 2+7a,c, i+3a) hut even in the most extreme 

case this cannot quite account for the observed moments (Anderson 2+8, 
Avery & Sachs 2+8).

he arc then led to consider the interaction moments 
discussed in Section III (d ). The theory predicts that these will 
he equal and opposite for conjugate nuclei which is necessary to 
fit the above discrepancy. Sachs (Sachs 2+3b) has calculated the 
longitudinal part of the interaction, moment using a phenomenological 
exchange potential and his value of C.C.h n. q. is too small. This 
can he interpreted to mean that most of the interaction moment 
cones from the transverse part of the exchange current which 
depends on the details of the theory used to calculate the exchange 
interaction. In particular it depends on which meson theory one
uses.

The transverse interaction moment has been calculated 
using the Mollar-Rosenfeld mixture (TheHung & Villars 2+8) (Their 
value is too small by a factor of ten.) and agreement is not 
obtained. Bat using symmetrical pseudoscalar theory Villars (2+7)
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obtains the range of values C,08 -» 0.31 n.m, which is consistent 
with the "observed" interaction moment of 0o2&5 n.m. This has 
been interpreted as evidence in favor of the existence of inter-* 
action moments, but it is by no means conclusive because of the 
well known difficulties in meson theory and because of the 
possibility of relativistic effects.



TABLE I

NUCLEON MAGNETIC MOMENTS and g-FACTORS

(-is( measured)
proton 2.7926

neutron -1.9129

SINGLE PARTICLE

JL State ^n |aPO S19 -1.913 2.793
i P.i 0.633 -C.264

P.3 -1.913 3.793
2 2 1.1 43 0.121+

a  5 
2

-1.913 1+. 793
3 f 5 

2
1.366 0.363

3 x't_£ -1.913 5.793
.4 0* -7r 10 489 1.717

4 ga
2

-1.913 6.793
5 h 3 

2
1 .56.5 2.62i+

r _ hi 1 -2— -1.913 7,793

6 i i  1 
2

1 .619 3.560

measured) gs(Dirac) g*
5.5352 2 1

-3.8258 0 0

TABLE II

MAGNETIC MOMENTS and g-FACTORS

sn-3.326 SP
5. 535

^ n
0.0000

J1P
1 .000

1.275 -0.528 C .0000 C. 333

-1.275 2.523 0.0000 ?. 000

0.765 0.033 0.0000 1 .2C0

-0.765 1.917 0.000 3.000

0.547 0.345 0.000 2 . 1 4 3

-0.547 1.655 0 c O 0 0 4. COO
0.425 0.491 0.000 3 . 1 1 1

-O.425 1.510 0.000 5.000
0.343 0.583 o.oco 4.091

-C.348 1.417 0.000 6. COO
0.294 0.647 0.000 5.077



MAGNETIC MOMENTS 0? ODD-ODD NUCLEI BY COUPLING

TABLE III

nucleus I neutron proton u(calc.) p( observed)B t8.t»6 state
Lx6 p 3r p3r 0.63 0.3221
a n 3 - 3 P 3 Pa ■i 4 03 1.8012 5

n 1 /4 Pi pa 0.37 0.403
Na2^ 3 c‘- 5 ^ 5 i - 73 1.7433

2‘ 2"
4 -P x 7 d. ■< - 1 .68 -1.29Q /" 2JOR 0 g 9£f

•C*1 .i
'T -2 . 1 2 - 1 .63

Lu1 ' 6
9 3.94

10 sJ- 1 3 b-i 1 4.60 4.2A <\j 2 £ 3. 23

TABLE IV

MAGNETIC MOMENT’S 0P CLOSED SHELL t 3 NUCLEI

rtucl sus rj. s fcate n  , , i - H  v.catculateo) p (ob xe r ye d} p (3 chmi

LI i.a (2x3 ! 5 r
j.'j 3 07 3.26 3.79

Be9 3_o ( 2 p3_) 3 2 ■1,14 18 -1.91
35v 32 ( 333 ■)3(■ i • 3 ’0.30 0.82 0,12

Mg""' 52 ( 5da ) “ 3  
'S'

15 •1,06 2,76 -0.9b - 1 9A



TABLE V
VARIATIONS IN' THE DEVIATIONS OP THE MAGNETIC MOMENTS PROM 

THE SCHMIDT LINES FOR NUCLEI OP THE SAME AND j 
DIFFERING BY TWO NUCLEONS OP THE ODD NUCLEON TYPE

odd Z
o f 7
K39 d  3  

2
.29

OS137
La139 

odd N

g7_
2

. 06

Mo95
Mo97 d 5  

2
.02

Cd S 1 „ 02•HZCd' 3 2 .

o 115 Sn
Sn117
Sn!17

S 12 .08

1 19 Sjl .05Sr 1" "
i 23 Te J
1 25Te ^

S 12 .15

Ba135
Ba137 d3

2
.10

Nd.11*3 A

Kd1lt5 f  7_ 
2

-.38

A

Sm12*9 ? 5
2

-.05

ajfeThe minus sign means that the addition of two neutrons has pushed
the magnetic moment away from the Schmidt lines instead of towards

them.
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table VI

MAGNETIC MOMENTS OP ODD NUCLEI BY INTERPOLATION BETWEEN
THE SCHMIDT LINES

odd
number nucleus i (predicted)

11 Ne21
10

32

0M3•1

19 g35
1 6s 32 -1.0

23 Cak320Oa 7r -1.33

25 22Tl
52 -1.79

27 TiU9221 7_
2 -0.96

31 5726Fe 32 -0.66

33 61
28Nl

3.2 0.10

i-i-1 Ge7332^e 92 -1.39

51 91U0Zr 5_
2 -0.99



'

- 31 - 

REFERENCES

Abbreviations: The Physical Review P.R.
Reviews of Modern Physics R.M.P.
Progress of Theoretical Physics P.T.P.
Helvetica Physica Acta H.P.A.

Anderson - The Magnetic Exchange Moment for He^ &
(P.R. 73 919(L), 1948)

Austern & Sachs - Interaction Effects on Radiative Transitions.
(P.R. 81 710, 1951)

Avery & Sachs - Further Remarks on the Magnetic Moments of
& He3. (F.R. 74 1320, 1943)

Bloch ~ Magnetic Moments of Sven-Odd Nuclei.
(P.R. 83 839(L), 1551)

Bloch, Ni codemus & Staub - A Quantitative Determination of the
Magnetic Moment of the Neutron in Units of the Proton 
Moment. (P.R. 74 1044, 1943)

Bohr - Quantization of Angular Momenta in Heavy Nuclei.
(P.R, 81 134, 1951a)- Nuclear Magnetic Moments and Atomic Hyperfine Structure.
(P.R, 81 331, 1951b)

Breit - Relativistic Corrections to Magnetic Moments of Nuclear 
Particles. (P.R. 71 400, 1947)

Breit & Bloch - Relativistic Correction to the Magnetic Moment of 
the Deuteron. (P.R„ 72 135, 1947)

Caidirola - Relativistic Correction in Calculating the Magnetic 
Moment of the Deuteron. (P.R. 69 608, 1946)

Condon & Shortley - The Theory of Atomic Spectra.
(Cambridge, 1935)

Christian & Hart -- The Neutron-Proton Interaction.
(P.R. 77 4 4 1 , 1950)



- 32

de. Shalit - Nuclear Magnetic Moments of Odd Nuclei.
(P.R. 80 103(L), 1950)- Deviations of Nuclear Magnetic Moments from the 

Schmidt Lines. (H.P.A. 24 296, 1951)
Dirac - Quantum Mechanics. (Oxford, 1947)
Feenberg - Notes on the j~j Coupling Shell Model.

(P.R. 76 1275, 1949)
Feenberg & Hammack - Nuclear Shell Structure.

(P.R. 75 1877, 1949)
of Light Nuclei.
(P.R. 51 597, 1937)

Nuclear Magnetic Moments 
(P.R. 80 751(b). 1950)

Nucleus.
(Oxford, 1949)

and the Theory of Light 
(P.R. 61 138, 1942)
(P.R. 53 470, 1938)

Klinkenberg - Tables of Nuclear Shell Structure.
(R.M.P. 24 63, 1952)

Kynch -■ A Note on Exchange Magnetic Moments.
(P.R. 81 1060(L), 1951)

Luttinger - A Note on the Magnetic Moment of the Electron.
(P.R. 74 893, 1948)

Mack - A Table of Nuclear Moments, (R.M.P. 22 64, 1950)
Margenau - Relativistic Magnetic Moment of a Charged Particle.

(P.R. 57, 383, 1940)
Margenau & Wigner - Magnetic Moments of Odd Nuclei.

(P.R. 58 103, 1940)
Mayer - On Closed Shells in Nuclei. (P.R. 75 1969(l), 1949)

~ Nuclear Configurations in the Spin Orbit Coupling Model
(P.R. 78 16 , 1950)

Feenberg & Phillips - On the Structure

Foldy & Milford - On the Deviations of 
from the Schmidt Limits.

Gamow & Critchfield - Theory of Atomic

Gerjuoy & Schwinger - On Tensor Forces 
Nuclei.

Inglis - On Nuclear Magnetic Moments.



- 33 ~

Miyazawa - Deviations of Nuclear Magnetic Moments from the 
Schmidt Lines. (P.T.P. 6 8C1, 1931)

Mizushima & Umezav/a - Calculation of Nuclear Magnetic Moments.
(P.R. 83 i-i-63(L) , 1951)- Nuclear Magnetic Moment and j-j Coupling Shell. Model. (p.R. 35 37, 1952)

Nordheim - On Spins Moments and Shells in Nuclei.
(P.R. 75 1892+, 192+9)

Oshorn & Foldy - The Phenomenological Theory of Exchange Currents in Nuclei. (p.R. 7 9, 7 95. 195c)

Primahoff - Long Range Tensor Forces and the Magnetic Moment of 
the Deuteron. (P.R, 72 1 1 3 , 1 92+7)

Rainwater - Nuclear Energy Level Argument for a Snheroidal 
Nuclear Model. (P.R. 79 2+32. 1950)

Rarita & Schwinger - On the Neutron Proton Interaction.
(P.R. 59 2+36, 192+1 )

Rosenfeld - Nuclear Forces. (Inters cience, 1924.3)
Sachs - The Magnetic Moments of Light Nuclei,

(P.R. 69 611 , 192+6)On the Magnetic Moment of the Triton.
(P.R. 71 i+57(L), 192+7a) On the Magnetic Moment of the Deuteron.
(F.R. 72 91, l92+7b) Interpretation of the Triton Moment.
(P.R. 72 312, 1 92+7c) Interpretation of the Triton foment.
(P.R. 73 1222(A). 192+8a) 

Phenomenological Theory of Exchange Currents ir Nuclei.
(F.R. 72+ 2+33, 19 +°h)

Sachs & Ross ■- Evidence for Non-Additivity of Nucleon Moments.
(P.R, 81+ 379(L), 1951)

Sachs & Schwinger - The Magnetic Moments of H"' and He .
(P.R. 70 2+1 ■ 192+S)

Schawlow & Townes - Nuclear Magnetic Moments and Similarity 
Between Neutron and Proton States in the Nucleus.

(F.R. 82 268(l), 1951)



-  34 -

Schiff - Nonlinear- Meson Theory of Nuclear Forces
(P.R. 8k, 1, 1951)

Schmidt - Uher die Magnetischen Momente der Atomkerne.
(Z.F. Physik, 106 358, 1937)

Schwinger - On Quantum Electrodynamics and the Magnetic
Moment of the Electron. (P.R, 73 416(L), 19^8)

Siegert ~ Nuclei and Electromagnetic Radiation.
(P.R, 52 787, 1937)

Stern - On a Model for Exchange Magnetic Moments in Nuclei.
(The sis, Harvard 19)

Talmi - On the Magnetic Moments of Odd-Odd Nuclei.
(P.R. 83 12i|8(L), 1951)

Thellung & Villars - On the Magnetic Moment of and He^ in 
the Moller-Rosenfeld Theory of Nuclear Forces.

(P.R. 73 924(L), 1943)
Townes, Foley & Low - Nuclear Quadrupole Moments and Nuclear

Shell Structure. (P.R. 76 1415(I0> 1949)
3 3Villars - On the Magnetic Exchange Moment for W  and He .

(P.R. 72 256(l ), 1947)
Way - The Liquid Drop Model and Nuclear Moments.

(P.R. 55 963, 1939)

#



- 35 -

3UPPLEMENTARY REFERENCES

Bethe - Magnetic Moment of Li7 in the Alpha Particle Model.
(P.R. 53 81+2(L), 1933)

Blanchard & Avery - The Low States of Li7,
(P.R. 78 70k, 1950)

Case - The Magnetic Moments of the Neutron and Proton.
(P.R. 7k 138U(L), 1948)

Peingold - Effect of the Tensor Force on the Low Levels of
Li° and Li7. Thesis, Princeton. 1952)

Gordy - Relation of Nuclear Quadrupole Moment to Nuclear Shell 
Structure. (P.R. 76 139, 1949)

Inglis - The Nuclear Magnetic Moment of Li7 hy Perturbation 
Theory. (P.R. 53 3BC, 1933b)On Interpreting Related Magnetic Moments of Light 
Nuclei. (P.R. 55 329, 1939)

Jeffries - A Direct Determination of the Magnetic Moment of the 
Proton in Units of the Nuclear Magneton.

(P.R. 81 1040,1951)Philips -- On the Magnetic Moments of Light Nuclei.
(P.R. 57 160(l ), 1940)

Rose - 'Electric Ouadrupole and Magnetic Dipole Moments of
Li6 and N1'n (P.R. 56 1064(L), 1939)

Rose & Bethe - Nuclear Spins and Magnetic Moments,
(P.R. 51 205, 1937)

Erratum. (P.R. 51 9S3(D, 1937)
Sachs - Nuclear Spins 

Model.
Spruch - On the Space

and. Magnetic Moments by the Alpha Particle
(P.R. 55, 325. 1939)

Exchange Magnetic Moments of Light Nuclei.
(P.R, BO 372, 1950)

vfangne ss ... Nuclear Magnetic Moments and. Shell Structure.(P.R. 78 620(L), 1950) 
Ou the Magnetic Moments of the Proton and Neutron.

(P.R. 80 769(L), 1950)



I * 1/2 5/12 9/2 11/25/2 7/2




