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Modern proposed atmospheric neutrino oscillation experiments, such as PINGU

in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision

measurements of the oscillation parameters including the ordering of the neu-

trino masses. They can, however, go far beyond that: Since neutrino oscil-

lations are affected by the coherent forward scattering with matter, neutrinos

can provide a new view on the interior of the earth. We show that the proposed

atmospheric oscillation experiments can measure the lower mantle density of

the earth with a precision at the level of a few percent, including the uncertain-

ties of the oscillation parameters and correlations among different density lay-

ers. While the earth’s core is, in principle, accessible by the angular resolution,

new technology would be required to extract degeneracy-free information.

1 Introduction

Using neutrinos for Earth tomography is a dream much older than modern oscillation physics,

see Ref. [1] for a review: Early proposals exploit the increase of the neutrino cross sections with

energy, leading to significant neutrino absorption over the earth’s diameter for energies larger
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than a few TeV [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. While absorption tomography is conceptu-

ally appealing, a technically feasible and scientifically competitive approach to neutrino Earth

tomography probably requires neutrino oscillations.

The condensing evidence for neutrino oscillations by the Super-Kamiokande [13], SNO [14],

and KamLAND [15] experiments between about 1998 and 2004 was concluded with the mea-

surement of a non-zero value of the last missing mixing angle θ13 by Daya Bay [16] and

RENO [17] in 2012 – and was finally rewarded with the Nobel prize in 2015 for the discovery of

neutrino oscillations to Takaaki Kajita (Super-Kamiokande) and Arthur B. McDonald (SNO).

Modern neutrino oscillation facilities aim for precision measurements and are designed to mea-

sure the unknown parameters, such as mass ordering and CP violation. Since coherent forward

scattering in Earth matter affects neutrino oscillations [18, 19], it can used as an alternative

approach for Earth tomography compared to neutrino absorption. It in principle allows for pre-

cision matter density measurements along the propagation path of these neutrinos [20, 21], and

the required energies are much lower. While neutrino absorption tomography can be compared

to X-ray tomography, neutrino oscillation tomography has one interesting additional feature:

since the quantum mechanical operators in different density layers do not commute, even the

reconstruction from a single baseline (propagation distance) carries information how the struc-

ture along the propagation path is arranged [22, 23, 24, 25].

Atmospheric neutrinos are produced in the earth’s atmosphere by the interactions of cosmic

rays continuously bombarding the earth. The generic setup, from the point of view of the

detector, is illustrated in Fig. 1: neutrinos are detected from different zenith angle directions

θz (the angle between zenith – from the detector’s viewpoint – and incoming neutrino), which

correspond to cones through the earth with different baselines L = 2RE cos θz (RE: Earth

radius). Within the zenith angle resolution (illustrated in left half of figure), the oscillation

paths can be distinguished. We will test the structure of the earth and will identify which
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Figure 1: Neutrino oscillation model of the earth. Different layers of the earth used for
this analysis, adopted from the PREM model [26]; 1: Crust, 2: Lower Lithosphere, 3: Upper
Mesosphere (mantle), 4: Transition zone, 5: Lower Mesosphere, 6: Outer core, 7: Inner core.
The right half of the figure shows the θz (zenith angle) binning used for the analysis, the left
half of the figure illustrates the directional resolution (here for ORCA, ν̄e [27], 1σ range) for
selected energies and directions.

parts atmospheric neutrino oscillations are most sensitive within this scenario. We will use

proposed experiments such as PINGU (“Precision IceCube Next Generation Upgrade”) [28]

in the Antarctic ice or or ORCA (“Oscillation Research with Cosmics in the Abyss”) [29] in

Mediterranean sea water, which are modern megaton-sized neutrino oscillation experiments

designed for neutrino oscillation precision measurements with leading sensitivity to the neutrino

mass ordering – and thus the Earth matter effect; see the Appendix for the simulation techniques.

Earlier discussions in that direction include the matter effect sensitivity [30] and the sensitivity

to the core composition [31].
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2 Model and Methods

We propose a whole-Earth model with seven different density layers adopted from the Prelim-

inary Reference Earth Model (PREM) profile [26], which is shown in Fig. 1, to identify the

regions with highest sensitivity. We split the PREM profile into seven layers at depths d, where

the characteristic density jumps occur (cf., solid curves in Fig. 2) : Crust (1), 0 . d . 35 km,

Lower Lithosphere (2), 35 km . d . 60 km, Upper Mesosphere (3), 60 km . d . 410 km,

Transition zone (4), 410 km . d . 660 km, Lower Mesosphere (5), 660 km . d . 2860 km,

Outer core (6), 2860 km . d . 5151 km, Inner core (7), 5151 km . d . RE = 6371 km (RE:

Earth radius). Note that compared to seismic waves, which tend to be reflected or refracted at

density jumps, neutrino oscillations are not very sensitive to structures or even strong gradients

shorter than the oscillation length [23], and therefore cannot resolve the density jumps precisely.

Therefore it is reasonable to adopt this knowledge from geophysics.

Each baseline (see rays in Fig. 1) is separated into sections going through the density lay-

ers. Within each density layer, we follow the PREM profile [26], where the matter profile is

discretized into a sufficient number of steps with constant density. The oscillation probabilities

are then evaluated with the evolution operator method (see e.g. Ref. [32]): the initial state |να〉

is propagated through all matter density slices with thicknesses xj and constant densities ρj

through all crossed layers by

V(xj, ρj) = e−iH(ρj)xj (1)

as the Hamiltonian within each layer H is not explicitly time-dependent. The transition proba-

bility then reads

Pαβ = |〈νβ|V(xn, ρn) . . .V(x1, ρ1)|να〉|2 . (2)

Note that in general

[V(xi, ρi),V(xj, ρj)] 6= 0 for ρi 6= ρj , (3)
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which means that the different operators do not commute and the probability will depend on the

order the layers are traversed. This is an important difference to X-ray or absorption tomogra-

phy, which is only sensitive to the path-integrated attenuation.

Our measured quantity in each density layer is actually a factor linearly re-scaling the den-

sity profile in this layer, as the actual density profiles for different baselines are slightly different

even if they cross the same layer. Although this model is an approximation, it yields similar

results for the relative matter precision compared to alternatives (such as choosing the density

within each layer to be constant), but maintains accuracy of the oscillation probabilities and

the oscillation measurements for the more realistic PREM profile. For convenience, we call the

measured scaling factor for layer i “ρi/ρ̄i” , and depict it as error on the average matter density.

Note that since neutrino oscillations are not sensitive to structures or changes shorter than

the oscillation length [23], additional parameters, such as multiple layers or gradients in the

layers, cannot be resolved anymore beyond that level. It is clear that similar arguments ap-

ply to individual geophysical techniques, such as using the earth’s free oscillation modes, see

Refs. [33, 34]. As a consequence, “structural” information from neutrino oscillation tomogra-

phy has to rely on strong density jumps (leading to interference in the probabilities) or different

baselines, and “average” information has to rely on some knowledge from geophysics on scales

shorter than the oscillation length (smoothing the density profile). Since new ways to combine

neutrino oscillations with – or compare them to – geophysical results require further research,

and atmospheric oscillation tomography is limited by the complexity from the number of param-

eters (oscillation parameters, systematics, and geophysics parameters), we choose the approach

introduced above.

Furthermore, note that we do not include constraints on the total mass and rotational inertia

of the earth, which means that (technically speaking) some of our variations would violate

these important constraints. However, in order to include these, one needs to define a correction
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scheme, i.e., which layers are corrected for density variations to maintain these constraints. One

possibility has been discussed in Ref. [20]: Since changes of the innermost densities of the earth

(e.g., inner core) influence mass and rotational inertia less that the outermost parts (where the

volume is much larger), one can use small adjustments of the outer densities to compensate for

large density changes in the innermost earth in spite of the higher densities there. Since it is clear

that the final result would depend on that correction scheme, and additional constraints would

rather improve our result than deteriorate it (in a similar way as the free oscillation result [33]),

we do not consider the total mass and rotational inertia constraints in this work. An alternative

(but computationally more expensive) approach would be to generate very different fit density

profiles from the very beginning, and define a measure how well they fit neutrino oscillations

and other potential constraints [33, 23].

The precision on ρi/ρ̄i is obtained by minimizing the ∆χ2 over all oscillation parameters,

auxiliary systematics parameters, and the other ρj/ρ̄j (j 6= i) simultaneously. We also impose a

30% external constraint on ρj/ρ̄j for j 6= i, i.e., we assume that there is some crude knowledge

on the other layer densities from geophysics and whole-Earth constraints. From the geophysics

perspective, this is a very coarse constraint. From the particle physics perspective, it has the

advantage that it prevents the n-dimensional line minimization techniques used for the analysis

from falling into unphysical solutions, such as negative densities (here the penalty χ2 would

exceed nine). It does not have any significant consequences for the result, except from the outer

core density measurement which suffers from correlations with the inner core density.

In order to illustrate the underlying physics, consider a simple example using neutrino os-

cillations in constant matter density. The oscillation probability Pµe = P (νµ → νe) can (ne-

glecting contributions from solar terms) be approximated as

Pµe ' sin2 θ23 sin2(2θ̃13) sin2

(
∆m̃2

31L

4E

)
.
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This probability is (apart from the factor sin2 θ23) just a two-flavor oscillation probability,

where the fundamental parameters ∆m2
31 and θ13 are replaced by effective parameters in matter

∆m̃2
31 = ξ ·∆m2

31 and sin(2θ̃13) = sin(2θ13)/ξ with the mapping parameter

ξ ≡
√

sin2(2θ13) + (cos(2θ13)− Â)2

and the matter potential Â ≡ ±2
√

2GFneE/∆m
2
31; the different signs refer to neutrinos (plus)

and antineutrinos (minus). Here the quantity of interest is the electron density in Earth matter ne,

which can be converted into the matter density by ne = Ye ρ/mN using the electron fraction Ye

(number of electrons per nucleon) and the nucleon mass mN . While one has for hydrogen Ye =

1, heavier materials prefer Ye ' 0.5 because of approximately equal numbers of protons and

neutrons. We fix Ye = 0.5 in this study, but one should keep in mind that one actually measures

the product of Ye × ρ.1 It is easy to see that the condition Â→ cos(2θ13) minimizes ξ, leading

to effective maximal mixing. This case is often referred to as “matter resonance”, and can be re-

cast into a condition for energy Eres [GeV] ∼ 13.4 cos(2θ13) ∆m2 [10−3 eV2]/(ρ [g/cm3]). Us-

ing typical mantle (ρ ∼ 5 g cm−3), outer core (ρ ∼ 11 g cm−3), and inner core (ρ ∼ 13 g cm−3)

densities, one obtains Eres ' 6.3 GeV, Eres ' 2.9 GeV, and Eres ' 2.4 GeV, respectively.

These energies are perfectly covered by the atmospheric neutrino flux, and are, in principle,

detectable by the discussed experiments – although the core resonance energies are close to

the threshold. The corresponding directional resolutions are illustrated in Fig. 1 (left half):

From this figure, one can immediately see that excellent sensitivity is expected to the Lower

Mesosphere (layer 5). Although inner core and outer core can be, in principle, resolved, the

corresponding data will be smeared over direction, the covered solid angle (the event rate is pro-

portional to) is smaller, and the relevant energies are close to the experiment threshold. While
1 The allowed range for Ye is actually small for typically used geophysical composition models - which implies

that the composition is much harder to measure than the matter density. The reason is that heavier stable nuclei
typically contain similar numbers of protons and neutrons – as long as there is no significant hydrogen content. A
well studied example in that context is the outer core, see Ref. [31], Table 1: The values of Ye vary at the level of
one percent – which is beyond the relative precision we find in this study.
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PINGU ORCA
Layer NO IO NO IO
Crust (1) No sens. No sens. No sens. No sens.
Lower Lithosphere (2) No sens. No sens. No sens. No sens.
Upper Mesosphere (3) -53.4/+55.0 No sens. -51.2/+53.4 -69.1/+52.2
Transition zone (4) -79.2/+38.3 No sens./+72.2 -61.2/+35.6 -52.7/+45.8
Lower Mesosphere (5) -5.0/+5.2 -10.5/+11.6 -4.0/+4.0 -4.7/+4.8
Outer core (6) -7.6/+8.2 -40.2/No sens. -5.4/+6.0 -6.5/+7.1
Inner core (7) No sens. No sens. -60.8/+32.9 No sens.

Table 1: Percentage errors (1σ) for different matter density layers for the normal ordering
(NO) and inverted ordering (IO) best-fits, including systematics and correlations with oscillation
parameters and other matter layer densities.

these points can be illustrated with the simple constant matter approach, the realistic matter pro-

file of the earth leads to interesting interference effects and a parametric enhancement coming

from the oscillation length matching the mantle-core-mantle structure of the earth [35, 36], see

also Ref. [37], which are treated numerically. Additional complications are the composition of

the atmospheric neutrino flux, containing both electron and muon flavors, and the inability of

the detectors to discriminate neutrinos from antineutrinos; see e.g. Refs. [38, 39] for details.

We use two event samples (muon track- and cascade-like) for the analysis, including all these

effects; for analysis details, see the Appendix.

We point out that a “proof of principle” for the independent extraction of the layer densi-

ties requires an experiment simulation including systematics, correlations with the oscillation

parameters, and correlations among the layer densities in a self-consistent framework, see the

Appendix, which is novel in this work. The simulation techniques are based on Ref. [40] using

an extended version of the GLoBES (“General Long Baseline Experiment Simulator”) soft-

ware [41, 42], which can handle the required level of complexity.
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Figure 2: Experiment sensitivity to matter density. Projected experiment precision (1σ error
bars) for PINGU (left) and ORCA (right) after ten years of data taking for the matter density
layers corresponding to Fig. 1. Here the normal mass ordering best-fit values are assumed, and
correlations (with systematics, oscillation parameters, and other layer densities) are taken into
account. The solid curves correspond to the PREM matter density profile [26].

3 Results

For the matter density measurement, one can adopt two viewpoints: a) Tomography approach:

what parts of the earth are atmospheric neutrino oscillations most sensitive to? b) Precision

approach: suppose that better geophysical information exists on some layers, with what preci-

sion can a specific density be extracted? To address a), we show in Fig. 2 (see also Tab. 1) the

expected precision including systematics and correlations with oscillation parameters and other

matter densities. Since the zenith angle resolution (Fig. 1) prohibits a resolution of layers 1, 2,

no sensitivity can be obtained, and the sensitivity to layers 3 and 4 is weak.

The best precision is found in the lower mantle with 5% and 4% for PINGU and ORCA,

respectively. The corresponding ∆χ2 is shown in the left panel of Fig. 3 for ORCA: it is well-

behaved Gaussian and correlations with other density layers are not important. This result may,

at a first glance, not be too exciting compared to the collective constraints from geophysics in-
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Figure 3: Impact of parameter degeneracies. Here the log-likelihood ∆χ2 is shown as
a function of the relative error on the average density for three different layers (in different
panels) for ORCA. Solid curves include correlations among different matter density layers,
with systematics, and oscillation parameters, whereas dashed curves do not include the matter
density layer correlations. The horizontal lines correspond to 1σ, 2σ, and 3σ for a Gaussian
∆χ2.

cluding free oscillations, total mass, and moment of inertia of the earth, which are believed to

constrain the mantle density at the per cent level [33, 34] – although the statistical interpretation

of these precisions (confidence level of the error) seems less straightforward than in the present

case. We have nevertheless demonstrated that neutrino oscillations can contribute at a similar

level with an independent technique and different systematics. They may even be competitive to

Ref. [33] if the whole-Earth constraints (mass, rotational inertia) are included, and our method

does not rely on the assumption of linearized perturbation theory as Ref. [34]. Future tests

of neutrino tomography may use similar techniques for better comparisons, which are, how-

ever, currently subject to computational constraints. Further applications may include the test

of ambiguities and structures, such as the seismic wave-inferred low shear velocity provinces

(LLSVPs) or ultra-low velocity zones (ULVZs) in the lower mantle.

Fig. 2 suggests some sensitivity to the earth’s outer core at 1σ; however, Fig. 3 (middle

panel) illustrates that the ∆χ2 is not Gaussian for higher confidence levels, and degeneracies

exist for ρ/ρ̄ > 1. The difference between dashed and solid curves mainly comes from the corre-
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Figure 4: Oscillation probability. Oscillation probability Pµe for the outer core density (6) and
three different values of ∆ρ/ρ (marked by dots in the middle panel of Fig. 3) and for angular
bin θz ' 160◦ (marked as dashed line in Fig. 1).

lation with the inner core density (the event rates mix within the zenith angle resolution). While

the 1σ precision (solid curve) roughly corresponds to the one obtained for the core composi-

tion estimate in [28], it is clear that the shown degeneracies prohibit a self-consistent extraction

of the outer core density up to higher confidence levels. This result applies to the chemical

composition measurement as well as, in comparison to Ref. [31], detector setups closer to the

experimental proposals are used, and the densities of the other layers are left free.

If, however, viewpoint b) is adopted, the dashed curve will represent the core density mea-

surement, and the impact of correlations is reduced. The intrinsic oscillatory structure in Fig. 3

remains, as illustrated in Fig. 4 for three different values of ρ/ρ̄ for Pµe, corresponding to the

dot marks in Fig. 3 (middle panel). The oscillation peak at E ' 6 GeV is almost perfectly re-

matched by ρ/ρ̄ = 1.55, while it is very different for ρ/ρ̄ = 1.25. The low energy differences

are more difficult to resolve due to the smaller effective mass and poorer directional and energy

resolutions for lower energies. On the other hand, the lower bound on the outer core density is

robust, as lower densities correspond to higher resonance energies where the effective masses
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Figure 5: Experiment sensitivity to matter density for alternative parameter values. Same
as Fig. 2 for ORCA, but for inverted mass ordering best-fit (left panel) and NO, sin2 θ23 = 0.6,
δCP = 7π/8 (right panel).

of the detectors increase.

We chose the NO best-fit earlier in this study; however, the actual oscillation parameters

chosen by Nature may be different. We therefore show the result for ORCA and the IO in

Fig. 5 (left panel), where the performance is slightly worse (see also Tab. 1). Although the

experiments include both neutrinos and antineutrinos, the antineutrino cross sections are lower

– and therefore the expected event statistics. For example, we find precision in the lower mantle

of 11% and 5% for PINGU and ORCA, respectively, for the IO.

Note, however, as both the mass ordering sensitivity and the matter effect sensitivity scale

with terms ∝ sin2 θ23 in the appearance oscillation channels, the performance for the earth

density measurements will scale in a similar way to Fig. 10 with this parameter. This means

that the actual result could be much better depending on the oscillation parameter values chosen

by Nature. An example is shown in the right panel of Fig. 5 for ORCA for a parameter set

within the 3σ currently allowed range. Here a precision of better than 3% is obtained for the

lower mantle density. In this case, the outer core density can be actually measured with a
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precision better than 5%, and the degeneracies can be resolved at almost 2σ.

While the inner core density may be the prime target from the geophysics perspective, as it

is the most difficult to access, currently planned instruments do not allow for a high confidence

level extraction even if all the other densities were known (see dashed curve in right panel of

Fig. 3). This measurement operates close to the detection threshold, where also energy and

zenith angle resolutions are weaker, and it suffers from a very small solid angle covered by

the inner core. A more densely instrumented detector, such as proposed in [43, 44], would

have a lower threshold and potentially better low energy directional and angular resolutions

helping both the inner and outer core density measurements. Especially in combination with

geophysical data on the outer core, an extraction of the inner core density may then become

possible.

4 Summary and Conclusions

We have demonstrated that atmospheric neutrino oscillations measured by planned detectors

can provide excellent sensitivities to the lower mantle density and give a robust lower bound

on the outer core density. The obtained information is complementary to that of seismic waves,

as different quantities (electron density versus seismic wave velocity) and different propagation

paths (straight lines versus refracted curves) are tested, and the underlying systematics are very

different.

Finally, neutrino oscillation tomography is yet a very young discipline which only has be-

come feasible after the discovery of a non-zero value of θ13 in 2012. Further applications may

include independent tests of irregular seismic wave propagation zones the lower mantle, where

PINGU and ORCA can provide complementary information due to different locations. In the

future, techniques similar to the ones used in geophysics [33, 34] may be developed, to allow

for an easier comparison to and combination with geophysical data. The most inaccessible part
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of the earth, the inner core, may also warrant further investigation, and could benefit from the

combination with large volume detectors with lower thresholds, such as the proposed Hyper-

Kamiokande [45] experiment.
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Simulation Methods and Mass Ordering Sensitivity

The primary physics target for the PINGU [28] and ORCA [29] experiments is the mass or-

dering determination [38], i.e., the question if the mass eigenstate m3 is lighter or heavier than

m1 and m2. The mass ordering can be measured by matter effects, as the resonance condition

Â→ cos(2θ13) can be only implemented for neutrinos and sgn(∆m2
31) = +1 (normal ordering,

NO) or antineutrinos and sgn(∆m2
31) = −1 (inverted ordering, IO); see definition of Â in main

text. Therefore, the normal mass ordering will lead to an enhancement of the oscillation effect

for neutrinos and suppression for antineutrinos, and the inverted mass ordering to an enhance-

ment for antineutrinos and suppression for neutrinos. Note that PINGU and ORCA cannot

distinguish between neutrinos and antineutrinos directly, but have to rely on flux and cross sec-

tion differences; the India-based Neutrino Observatory (INO) [46, 47] is a different proposal

which can discriminate between neutrinos and antineutrinos by magnetization of an iron detec-

tor, but the detector mass is much smaller. Although we propose a spin-off of the main physics

target in the main text, we need to establish the mass ordering determination in a self-consistent

framework in order to demonstrate that the matter profile sensitivity is guaranteed even without

extra equipment.

We therefore show that we can reproduce the mass ordering sensitivities of the experimental

collaborations, including the uncertainties of all oscillation parameters, such as δCP. We treat

all 6 oscillation parameters, 7 matter densities, and, using the pull method, 12 auxiliary sys-

tematics parameters equally. The precision for one parameter, such as a matter density or an

oscillation parameter, can be obtained by projecting the resulting 25-dimensional fit manifold

onto a one-dimensional sub-space by minimization of the ∆χ2 over all parameters not shown.

Most importantly, this framework is fully self-consistent in the sense that any measurement of

the matter density is consistent with the measurement of the oscillation parameters, which can
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Systematics PINGU ORCA Comments Ref.
Experiment-related systematics:
Normalization 0.25 0.25 Includes atmospheric flux nor-

malization
Cross sections νµ, ν̄µ, νe,
ν̄e (CC)

0.05 0.05 Includes uncertainty in Meff .
Uncorrelated among different
cross sections.

[48]

NC normalization 0.11 0.11 Value comparable to pull ob-
tained in recent ORCA studies

[29]

Uncertainties of atmospheric neutrino flux:
Normalization Included in “Normalization” above. [49]
Slope error (zenith bias) 0.04 0.04 Tilt of spectrum in cos θz [50, 51]
Flavor νe/νµ 0.01 0.01 Error in flavor ratio [51]
Polarity ν̄µ/νµ 0.02 0.02 Error in neutrino-antineutrino

ratio
[51]

Polarity ν̄e/νe 0.025 0.025 Error in neutrino-antineutrino
ratio

[51]

Normalization down-
going events

0.04 0.04 Value similar to zenith bias [51]

Impact of Earth model: (included if explicitly stated)
Matter density 0.3 0.3 Error on matter density × com-

position, uncorrelated among
layers 1 to 7

Table 2: Considered independent systematical errors. The second and third columns list the
relative errors assumed for PINGU and ORCA systematics. Altogether, there are 12 systematics
pulls and 7 density parameters included in the analysis.

be extracted at the same time as different projections of the fit manifold.

Common Simulation Framework

We simulate PINGU and ORCA for the first time within an identical oscillation framework, the

same binnings, the same systematics implementation and parameters, the same definition and

computation of the performance indicators as for long-baseline experiments such as LBNF-

DUNE [52], and the same Earth density profile, using an extended version of the GLoBES

software [41, 42]. That GLoBES version allows for user-defined, channel-based systematics

20



treatment across experiment boundaries, which was first applied in Ref. [48]. For atmospheric

neutrino oscillation experiments, the different zenith angle bins are defined as different ex-

periments in GLoBES. The directional smearing is performed after the channel-based event

rate computation using pre-computed migration matrices directly compiled into the software,

whereas the energy resolution is a built-in feature of GLoBES. The simulation itself is an update

of Ref. [40], extended by cascade event sample and the ORCA experiment.

The energy binning for both experiments is chosen in steps of 1 GeV from 2 to 50 GeV, and

in steps of 10 GeV from 50 to 100 GeV. The oscillation probabilities are evaluated at a suffi-

ciently large number of sampling points to capture fast oscillation features. For the directional

binning, we choose a binning in zenith angle θz instead of cos θz, where the zenith angle bin cen-

ters correspond to the rays in Fig. 1. There is a simple reason for this choice: the cos θz-binning

becomes coarser towards the earth’s innermost parts, which we are most interested in. We have

checked that the statistical difference for the mass ordering sensitivity between θz and cos θz

binning is small. We also include two overflow bins 78.5◦ . . . 90◦ and 0 . . . 78.5◦ corresponding

to down-going events. These down-going neutrinos create a non-oscillating background for the

mass ordering determination (down-going events close to the horizon may be reconstructed as

up-going ones), while the overflow bins can (in principle) be used to constrain systematical

errors. Since PINGU is fully contained in IceCube, we assume that the veto of atmospheric

muons is good enough to use the overflow bins to constrain systematical errors, whereas we do

not use the statistical information in these bins in ORCA.

The zenith angle smearing (redistribution of events) between incident θz and reconstructed

θ′z is computed by an oscillation-channel dependent migration matrix Rijk ≡ R(Ei, (θ
′
z)
j, θkz )

(i, j, k: bin indices) as a function of neutrino energy Ei. This implies that upgoing events

exceeding θz = 180◦ are reconstructed in the corresponding zenith angle bin under a different

azimuth. The advantage of this method is that the zenith angle resolution does not become
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asymmetric at the boundaries, and Gaussian behavior is better reproduced. We interpret the

zenith angle resolutions ∆θz in terms of a normalized Gaussian

f(E, θ′z, θz) =
1

∆θz(E)
√

2π
exp

(
− (θz − θ′z)2

2(∆θz(E))2

)
(4)

in order to compute the migration matrix

Rijk ≡ R(Ei, (θ
′
z)
j, θkz ) =

(θ′z)j,max∫
(θ′z)j,min

f(Ei, θ
′
z, θz)dθ

′
z (5)

integrated over the θ′z range covered by zenith angle bin j. The energy smearing between inci-

dentE and reconstructedE ′ energy is described by an energy smearing matrix Sij ≡ S(E ′i, Ej).

We parameterize this matrix with a Gaussian

g(E ′, E) =
1

∆E(E)
√

2π
e
− (E−E′)2

2(∆E(E))2 (6)

similar to Eq. (4), such that

Sij ≡ S(E ′i, Ej) =

E′i,max∫
E′i,min

g(E ′, Ej)dE
′ (7)

integrated over the E ′ range of the ith energy bin, unless noted otherwise. Note that we inter-

pret the median zenith angle and energy resolutions given by the experimental collaborations

as ∆θz(E) and ∆E(E), which reproduces their sensitivities sufficiently well. This interpre-

tation has limitations depending on the structure of the actual event migration matrices, such

as non-Gaussianities, which can be only addressed by the experimental collaborations. How-

ever, it has the advantages that it can be identically applied to both experiments and allows for

comparability and transparency of the assumptions.

For the simulation, we use two event samples (muon tracks and cascades), which are a com-

bination of a number of channels. For instance, one “channel” corresponds to νe → νe (CC),
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including a specific source flux, cross sections, efficiencies, and fiducial volume; altogether

there are 32 such oscillation channels (from the two initial flavors νe, νµ into the three final

flavors νe, νµ, ντ makes six, times two for neutrinos and antineutrinos plus four non-oscillating

neutral current channels, makes 16, times two because separate channels with separate efficien-

cies for the two event samples are needed, makes 32). Each neutrino event is counted either

in the “right” channel as signal, or in the “wrong” channel as background, depending on the

(mis-)identification probabilities.

Systematics are treated exactly in the same way as in long-baseline simulations. It is im-

portant to note that not only the values for the systematical errors are important, but also how

systematics are correlated among different channels and bins. For example, one may not know

a certain cross section, but one does know that the same value has to be used everywhere the

same interaction is measured. These kind of correlations are self-consistently implemented, see

Ref. [48] for details. We list the considered systematics in Tab. 2, together with the assumed

values; each of these corresponds to one auxiliary parameter. For example, the cross section ×

fiducial mass errors for different event types are assumed to be known (externally measured) to

about 5% in the considered energy range, see e.g. discussion in Ref. [48]. Note that at this point

we adopt the identical systematics implementation and errors for both experiments, following

physical arguments (e.g., cross section uncertainties); however, one may think about alternative,

more inclusive concepts, see e.g. Ref. [53].

For the atmospheric neutrino flux, we use updated versions [54], where we use the azimuth-

averaged solar-min version for the South Pole (PINGU) and Gran Sasso (close to ORCA) sites.

The best-fit oscillation parameters are taken from Ref. [55]: sin2 θ12 = 0.304, sin2 θ13 =

0.0218, ∆m2
21 = 7.50 10−5 eV2, and for the normal ordering sin2 θ23 = 0.452, ∆m2

31 =

+2.457 10−3 eV2, δCP = 306◦ or for the inverted ordering sin2 θ23 = 0.579, ∆m2
31 = −2.449 10−3 eV2,

δCP = 254◦. Note that these solutions lie in different octants, and that δCP is slightly different.
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We take into account the current uncertainties on θ13, θ12, and ∆m2
21 using external priors with

the uncertainties from Ref. [55], but we do not constrain ∆m2
31 and θ23 externally.

We compute the ∆χ2 for a certain true mass ordering as the minimal ∆χ2 over all oscillation

parameters with the other mass ordering. This definition is exactly the same as the one used

for long-baseline experiments, such as LBNF-DUNE. It has two implications: First of all, the

symmetrical (∆m2
31)eff for the νµ disappearance channels [56, 57, 58, 59, 30, 60]

(∆m2
31)eff = ∆m2

31 −∆m2
21(cos2 θ12 − cos δCP sin θ13 sin 2θ12 tan θ23) , (8)

clearly indicates that the mass ordering sensitivity must, in general, depend on the fit value

of δCP. This has been demonstrated for PINGU, see Fig. 3 in Ref. [40]. Second, it is well

known that for non-maximal atmospheric mixing, the minimal χ2 may be either found in the

wrong ordering-right octant (fit θ23 similar to true θ23) or in the wrong ordering-wrong octant (fit

θ23 ' π/2− true θ23) region. Note that some of the published documents of the experimental

collaborations do not yet include all of these effects, which are however essential for a fair

assessment of the matter profile sensitivity.

Experiment-Dependent Specifications

Experiment-specific assumptions for this study include the effective mass (for different event

types), the mis-identification probabilities between muon tracks and cascades, and the zenith

angle and energy resolutions.

For PINGU, we use the 40 string version documented in the Letter of Intent [28]. The corre-

sponding quantities are shown in Fig. 6 , where we use identical parameterizations wherever the

curves for different event types are very similar. The zenith angle resolution, Fig. 6, lower left

panel, is parameterized by ∆θz(E) = 0.4
√
mp/E (radians), the energy resolution, in the lower

right panel, by ∆E(E)/E = 0.05 + 0.5/
√
E/GeV and ∆E(E)/E = 0.08 + 0.5/

√
E/GeV for

cascades and tracks, respectively.
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Figure 6: Parameterization of PINGU. Effective mass (upper left panel), fraction of events
identified as track (upper right panel), zenith angle resolution (lower left panel), and fractional
neutrino energy resolution (lower right panel) for different event types (as indicated in panels)
as a function of neutrino energy.

For ORCA, we use the setup with 6m Digital Optical Module spacing, following the infor-

mation presented at the International Cosmic Ray Conference (ICRC) 2015 [29, 61, 62, 63],

in consistency with Ref. [27]. The corresponding quantities are shown in Fig. 7. While the

effective mass (upper left panel) for all cascade channels is directly obtained from Ref. [63], the

effective mass for muon tracks for this configuration has been adopted from Refs. [29, 61]. The

flavor identification information (upper right panel), comes from Ref. [29]. The zenith angle

resolution in the lower left panel can for muon tracks be directly obtained from Refs. [29, 61],

whereas the resolutions for the electromagnetic cascade channels have been adopted from
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Figure 7: Parameterization of ORCA. Effective mass (upper left panel), fraction of events
identified as track (upper right panel), zenith angle resolution (lower left panel), and fractional
neutrino energy resolution (lower right panel) for different event types (as indicated in panels)
as a function of neutrino energy.

Ref. [63]; these resolutions are also shown in Ref. [27]. The assumed resolutions for neutral

currents and hadronic cascades are assumed to be similar to muon tracks for low energies, and

about a factor of two weaker for high energies. Note that the zenith angle resolutions are not pa-

rameterized, but instead interpolating functions are used to pre-compute the migration matrices.

The energy resolutions have been obtained in a similar way from Refs. [29, 61] for muon tracks,

and have been adopted from Ref. [63] for cascades, see lower right panel. We assume that they

are parameterized by ∆E(E)/E = 0.08 + 1/(E/GeV) + 0.0002 (E/GeV)2, ∆E(E)/E =

0.091 + 0.126/
√
E/GeV, ∆E(E)/E = 0.107 + 0.126/

√
E/GeV, and ∆E(E)/E = 0.142 +
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Figure 8: Mass ordering sensitivity as a function of time. Number of σ (assumed to be
√
χ2)

for the normal (left, NO) and inverted (right, IO) mass ordering determination at the best-fit
values for PINGU (blue) and ORCA (green) as a function of running time. Solid curves include
systematics and all oscillation parameter correlations and degeneracies. For a comparison to
the existing literature, δCP is fixed for the dashed curves. Dotted curves include the earth model
discussed in this work as systematics, i.e., assuming unknown matter densities.

0.158/
√
E/GeV for muon tracks, ν̄e cascades, νe cascades, and other cascades, respectively. A

systematic offset taking into account for an offset of reconstructed and visible energy has been

taken into account (for ντ hadronic channels, which are dominating the ντ interactions, and NC

cascades).

Comparing the lower rows between Fig. 6 and Fig. 7, our assumptions imply slightly better

zenith angle and energy resolutions for ORCA than PINGU at least for ν (ν̄e) cascades and

lower energies, which means that one may expect slightly better sensitivities for the matter

density measurement – which we find in the main text.

Sensitivity to Mass Ordering

We show the sensitivity for the NO and IO best-fits in Fig. 8. In order to compare to the

existing literature, we have fixed δCP to the respective best-fit value for the dashed curves; these

reproduce the official versions from the experimental collaborations [29, 64] very well. For the

solid curves, we fully take into account the minimization over δCP, which can somewhat affect
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Figure 9: Mass ordering sensitivity as a function of θ23. Number of σ (assumed to be√
χ2) for the PINGU (left) and ORCA (right) as a function of the true sin2 θ23. Solid curves

correspond to the normal ordering, dashed curves to the inverted ordering. The best-fit (BF)
values are marked as well. Three years exposure assumed, matter densities are assumed to be
known.

the sensitivities depending on the parameter point [40]. The final sensitivities for the NO are in

fact surprisingly similar for PINGU and ORCA, leading to a 3σ discovery after about three to

four years of operation within the identical systematics and oscillation framework; for the IO

the required times are somewhat longer.

While the solid and dashed curves in Fig. 8 assume the matter profile of the earth to be pre-

cisely known, we also perform a self-consistent simulation with the neutrino Earth model de-

scribed above (dotted curves). Interestingly, we find almost identical performances for PINGU

and ORCA for the normal mass ordering. The PINGU sensitivity for the inverted ordering is

most affected by the unknown matter density. An inspection of the systematics pulls reveals an

18% increase of the lower mantle density and a 6% decrease of the outer core density (com-

pared to the input densities) for the three year sensitivity. Here the external knowledge from

geophysics may in fact be essential to improve the mass ordering sensitivity.

An important cross-check is the dependence of the mass ordering sensitivities on the true

θ23, see Fig. 9. These figures reproduce the qualitative behavior of the experimental collabora-
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Figure 10: Required running time to establish the mass ordering at 3σ. The contours show
the approximate required running time [yr] to reach 3σ as a function of true δCP and true θ23

within the currently allowed parameter space at 3σ [55]. Matter densities are assumed to be
fixed.
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tions [27] but are somewhat more conservative for ORCA because the correlation with δCP is

fully included. In some cases jumps between the octants where the minimal χ2 found, see e.g.

right panel around sin2 θ23 = 0.43, which are somewhat sensitive to the experiment implemen-

tation for small θ23.

Finally we show in Fig. 10 the required running time (contours, in years) to establish the

mass ordering at 3σ as a function of true δCP and true θ23. For this figure, the performance has

been computed as a function of δCP and θ23 simultaneously for three years of operation. Then

we have linearly scaled the χ2 to obtain an estimate for how long it takes to reach 3σ. As a result,

a 3σ discovery is guaranteed for PINGU and ORCA within the anticipated timescale of the

matter density measurement even in remote (allowed) regions of the parameter space, whereas

in the most optimistic case, ORCA can find the NO already after one year. As a consequence, the

mass ordering will be resolved in either case at the timescale of the matter density measurement

discussed in the main text, and the corresponding degeneracy cannot affect these results.
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