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ABSTRACT

A comprehensive code system VISWAM for physics analysis of current and future power
reactors is being developed. The lattice analysis module of VISWAM code system can analyze
fuel assembly (FA) cells in hexagonal, square or ring cluster geometry. The lattice analysis
method initially incorporated in VISWAM code for fuel assembly (FA) analysis is based on a
combination of 1D multigroup transport and a 2D few group diffusion theory. The FA consists
normally of a number of heterogeneities like water pins, strong absorber pins like Gd and control
absorber pins. There is a strong flux gradient between such heterogeneities and neighbouring
pins which is not accurately predicted using diffusion theory. To improve this, an advanced
lattice analysis method has been incorporated in VISWAM code system in hexagonal geometry.
The new method is the interface current method based on 2D collision probability (CP). In this
method, we have used the 2D CP method at individual lattice cells level and different lattice cells
are linked using interface currents with double P2 (DP2) expansion of angular flux at cell
boundaries. The FA cell in hexagonal geometry with irregular lattice structure at boundaries is
modeled exactly. In this report we present the analysis of a heterogeneous benchmark problem
that is typical of a high temperature test reactor (HTTR). The present report describes in detail
the advanced methodology incorporated in VISWAM and the comparison of results for the
HTTR benchmark with published results.

Key words: Integral transport theory, 2D Collision Probability, Interface current, High
Temperature Test Reactor, Triangular pitch



1. INTRODUCTION

India is pursuing an active three stage nuclear power programme. The Unit-1 of the
VVER-1000 MWe reactor commissioned in collaboration with Russia at Kudankulam has been
operating at full power and another similar unit is in an advanced stage of commissioning. India
is carrying out design of an innovative 600 MWth high temperature reactor (HTR) for
commercial hydrogen production. To cater to the challenging physics design requirements of
such reactors, a comprehensive code system VISWAM is being developed. The lattice burnup
module of VISWAM code system has been completed [1, 2]. The lattice analysis method
initially incorporated in VISWAM is based on pincell and supercell calculations by 1D
multigroup collision probability (CP) method followed by 2D few group diffusion theory. The
FA cell consists normally of a number of heterogeneities like water pins, strong absorber pins
like Gd and control absorber pins. There is a strong flux gradient between such heterogeneities
and neighbouring pins which is not accurately predicted using diffusion theory. To improve this,
an advanced lattice analysis method has been incorporated in VISWAM code system. The CP
method is an accurate and versatile method which exists in most of the popular lattice analysis
codes. We have implemented the interface current method based on 2D collision probability
(CP) in VISWAM code system in hexagonal geometry. In this method, the geometry of the
hexagonal lattice cell is not distorted, i.e., the thin water slots at the outer boundary of the VVER
type FA have been accurately described. We have applied the CP method at individual lattice
cells level and linked the cells using interface currents. The incoming/outgoing angular flux is
expanded up to P2 Legendre expressions at each lattice cell surface. The albedo boundary
condition with unit reflection coefficient is applied on each of the hexagonal surface. The double
PO/P1 (DP0/DP1) Legendre expansions of angular flux had been applied in the two dimensional
fuel assembly cell calculation codes such as CASMO [3], PHOENIX [4], APOLLO [5] and
DRAGON [6]. Sanchez [7] and Ouisloumen et al. [8] have applied the CP method to hexagonal
assemblies with DP1 expansion. The use of DP2 expansion for hexagonal geometry is not
reported in literature to the best of knowledge of the authors. Carlvik’s method [9] is used to
calculate the collision probabilities. In this report we will first describe the collision probability
method and obtain the descretized integral transport equation in Section 2. The method of
calculating collision probability matrices in 2D geometries and details of the specific numerical

quadrature will be described. The solution technique to solve the descretized equations will be



presented. In the present report the analysis of a heterogeneous benchmark problem proposed by
Zhang et al. [10] using the interface current method in VISWAM code is presented. The brief
description of the benchmark problem is presented in Section 3. Section 4 gives the discussion of

results and Section 5 gives the broad conclusions.

2. THEORY

The basic approach for the treatment of the integral form of the transport equation is to
eliminate the angular dependence by projecting the equation onto a set of spherical harmonics
[10]. The CP method is obtained by a limited expansion of flux. The principle of interface
current method is to divide the FA into small cells and use a simple model to describe the
transfer between cells. Interface current method reduces the coupling of several spatial variables,
thus permitting an iterative cell by cell solution. Here we have used the 2D CP method to

describe transport within the cell and different cells in FA are coupled by the interface currents.

2.1  The Integral Form of Transport Equation
The integro-differential form of neutron transport equation is [12, 13]

Q. V(7,0 E)+ 2F E)p(72,E) = q(7, 02 ,E) (1)

where the source q(?, 0,E ) is given by
q(7,2,E) = [dE' [dQ' (7,0 > 0, E' > E)p(F, 2, E") + s(7,2) )
In order to simplify the discussion we will consider one group equation and omit the energy

dependence. Here the streaming operator (ﬁ V) is just directional derivative along the direction

of neutron travel. If s is the distance travelled by neutron along directionﬁ, the streaming

operator can be written as directional derivative

7v=2
T ds
If above equation is written at 7" + s Q2 then
%¢(7+sﬁ,ﬁ)+ SF+s2)p(T+s2,2) = q(F +s0,02) (3)

To derive the integral transport equation, we would like to look back along the line from which
neutrons are coming. We therefore define R = -s, from which d/ds = -d/dR and equation (3)

becomes



2 o(F-R2,0)+ 2(F-RO)$(F-RO, Q) = q(F RO, Q) @

The derivative in R is removed by using the integrating factor

exp [— fOR s(r-rR' Q) dR’] (3)
which has the property
Lexp|- [ 2(F-R @) dR'| = —=2(F = R )exp |- [} 5(F-R' 0) dR'| (6)

Hence multiplying equation (4) by the itegrating factor and integrating from 0 to R gives
¢(7,2) = p(F —R2,Q)exp[—t(F, 7-RD)| + [} dR' q(F-R' 2,0 )exp[—t(F,7-R'Q)] (7)
Where the optical path T between 7 and 7- R’ 2 is defined as

o(F,F-RT) = ¥ 5(F-R"T) dR" )

Equation (7) is the required form of integral transport equation. By assuming the isotropic nature
of source, the angular dependence of g in above equation can also be omitted and the equation

(7) takes the following form

(7, ﬁ)) =¢(r—R Q, ﬁ)exp[—r(?, -R ﬁ)] + i fOR dR' q(7-R' ﬁ)exp[—r(?’, - R’ﬁ)]

€)
If the medium is bound by a surface S, equation (9) can be written as
> = — T\ 1 (R ’ 7\ . —t(R’
d(7 Q) = ¢(75,0)e 75+EfOSdR q(r )e TR (10)

where 7o =7 — Ry 2 is an arbitrary point on the line passing through 7 in the direction 2 on

the surface S, where boundary conditions will be applied andr’ =7-R'00 .

The equation for scalar flux is obtained by integrating equation (10) over all angles. Thus
— -5 - — — - 1 R —I> - ! '3
¢ =[p(70) d = [, p("0)e5d0 + =, [ q(r")e " ard (1)

Now we have

dn = @R 4 dF = R2dR d (12)

2
Rg

So above equation can be rewritten as



-Tg

= oA — —T(R) —I) —I)
o = |, ‘BTE(Q. A_) ¢_(75,2)dS + fVZan(r )dr (13)
where ¢_ (ﬁ, ﬁ)is the incoming angular flux at surface S.

The outgoing flux at surface S can be obtained from equation (10) as it is valid at any point. The
outgoing flux is given by
"

b+ (75 0) = (7 W)™ + - PR g (1) e (14)

2.2 Discretized Flux Equation
For a given incoming angular flux to region under consideration, the system of Egs. (13)

and (14) give an exact description of the flux distribution inside the region as well as the
outgoing angular flux. In order to solve these equations we have to make some numerical
approximations for the scalar fluxes inside the cells and for the angular fluxes leaving and
entering the cell surfaces. One assumption is the flat flux approximation inside the region, i.e.
scalar flux ¢ () is constant in each region of the solution domain. Also we assume that the cross
sections and the source inside each region are constant. If solution domain is divided into Ny
regions of volume V; then

X(#)=Z forr €V,

q)=gq;forr €V;.

We consider the external boundary S to be composed of Ny surfaces of area S,. The
angular flux on these surfaces is approximated by a series expansion in terms of half-range

spherical harmonics
— A 1 v — - —
$+(75,0) = -T2 XY (@, 7). (15)

Where N, is the number of terms retained in the expansion, /Y are the expansion coefficients and
yYVare the linearly independent functions which are taken as orthonormal and satisfy the

following orthonormality condition
J(@ )Y (2,7 )Y (2, 7)d = wdy, (16)
We define the spatially averaged fluxes and partial currents as
1 - -
¢; = V—jfngb(r) dr (15a)

5



Ji =5 f @ ds (15b)

Integrating equation (13) over volume V; of ™ zone and multiplying the result by 2

f(;b(r) dr = X; z f] ﬁ)dS dr
a= 1V]
7(R)
+ ZZ_[,[LMRZq dr dr (16)
i=1 Vi Vi
Now using (15) in (16) and defining
2 -7(R) % _)
= fV] fVl 47TR2 dar. (17a)
b
P}, = ffV] s, 47TRZ¢V(.(2 n_)(2.7_) dS dF . (17b)
Eq. (16) becomes
Vid) = Tati Zoo Sl a + Ty P €i (18)

Here q; = S;V; + X;V;¢; is the total source in region i, S; is the fission and scattering
source in a group and Z; is the self scattering cross section within the group. Here Pj; gives the
probability of a neutron emitted uniformly and isotropically in region i and having its first
collision in region j and Pj,, gives the probability of neutron entering through surface o uniformly
in mode v and having first collision in region j. The expression for outgoing current is obtained

by multiplying equation (14) by Q. " d( and integrating over surface. So, we get

j ¢+ (s, 2) 0. A, afids

Ng Ny 1 Rg
— Zfe—rs ¢_(75,2)0. 7, d3dS + Z f4—f dR'q(ﬁ)e—f<R’)ﬁ fi,dAd7 dS
B=1s i=1 & 0
Now using eq. (15) and
RZd(Q = Q. A_dS

R2d1dR = d7



and defining

1 -Ts - > A -
Pai =5 Js, o e 7 (@) Q.1 didS (192)
P = [ f‘;ﬂzg Yy (2,0 )YH(Q, n) A, 2R dS'dS. (19b)
We get
N
Safta = TpSi Xt Pak J2 5Sp + LI PY g - (20)

Here Pj; is the probability that neutrons emitted uniformly and isotropically in region i
will escape through surface a in mode v and P;/ ll; is the probability that neutrons entering through

surface  uniformly in mode u will be transmitted through the cell and out through surface o in
mode v without making a collision. It should be noted that all the probability matrices in Egs.
(17) & (19) have a physical meaning of probabilities only for u,v = 0. For higher values

of u & v, they are components of probabilities and are traditionally called probabilities.

Egs. (18) & (20) are the required discretized equations for a cell under consideration. The
physical interpretation of Eq. (18) is that the two terms on the right are the contributions to the
collision rate in a region of cell from the neutrons entering through all the surfaces of the cell and
sources within all the regions respectively. Similarly, in Eq. (20), the two terms on right give the
contribution to the outward current through a surface of cell from the inward currents from all
other surfaces of the cell plus the sources within all regions of the cell. These equations get
closed by the usage of a boundary condition. Here we have used the albedo boundary condition

of the form [14]
¢-(75,2 - 2(n5.2)) = B(75,2)p+(75.2) @1

where ,B(FS’, ﬁ) is the reflection coefficient at the surface S and 2 — Z(n_s’.ﬁ)) is the final

direction in which neutron travels after reflection as shown in Fig. 1.



¢y

S|

Fig. 1 Specular Reflection of neutron at the surface
The boundary condition (21), under the approximations described above, reduces to the

following form

N

Ja=YpS T Ag T g (22)

In Eq. (22) AZ‘% is the boundary condition matrix which gives a relation between the

outgoing current on a given surface and the incoming current on different surfaces.

2.3 Properties of the Collision Probability Matrices

The four types of collision probabilities defined by equations (17) and (19) satisfy some

reciprocity and conservation relations. The reciprocity relations arise due to the symmetry of the

optical distance i.e. T (F’, r' ) =1 (r’ ,F’). We have following reciprocity relations

PY, = =Py, (23b)
SaPsy = SgPg- (23c)

The collision probabilities satisfy the following conservation relations

YV P+ TeS PY = 1. (24a)
N N
Zj!l P]Yx + Zﬁilpvg = 8oy- (24b)



The physical interpretation of Eq. (24a) is that a neutron born in region i must either
collide in the other regions or escape from it. Similarly for Eq. (24b), a neutron entering through

a surface should either collide in one of the zones or escape through one of the surfaces.
24 Calculation of Collision Probabilities

The complex integrals in four types of collision probabilities given by Eqgs. (17) and (19)
get simplified in 2D geometry. The two dimensional space element used for calculating collision
probabilities is shown in Fig. 3. We have used the following properly orthonormalized angular

representation functions for DP2 expansion of angular flux [13, 15]

YEa=1 (25a)

YL o = 2sinYsing. (25b)

Y3 , =3V2(sinY cos p — g). (25¢)

Y3 .= % (' sin?9 — %sinﬁ cos ¢ — 2—70). (25d)

Vi o = V306(sin?9 cos? ¢ — 52—1sin2 9 — %sinﬁ cos ¢ + g). (25¢)
Y3 o= % ( sin?9 cos ¢ sin ¢ — %sinﬁ sin ¢). (25%)

Where ¥ is the angle between neutron tracking direction and polar axis, and ¢ is the
angle which projection of the neutron direction on 2D plane makes with the outward (+) or
inward (-) normal to surface @ as shown in Fig. 2. Here first function (Eq. 11a) corresponds to
the PO expansion, the first three functions (Eq. 11a to 11c) correspond to the P1 expansion and

all six functions (Eq. 11) constitute the P2 expansion.

Surface S
[

Pg

Surface a

Fig. 2 Angle of projection of neutron direction on 2D plane with inward/outward normal to
lattice cell surfaces
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—_—
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*.  Region -

Surface S

v
>

Fig. 3 Definition of two dimensional Space element

2.4.1 Region to Region Collision Probabilities
The calculation of collision probability is described in detail in references [14] & [16].

For completeness, we give here the final expressions. The region to region collision probability

is given by
1 2m Ymax
Pij = f f [Kl3(TU)—Kl3(TU+Tj)—Kl3(TU+T1)+K13(TU+T]+Tl)] dde
0 Ymin

(26a)

where the optical distances 7; , T; & 7;; are shown in Fig. 3 and Ki; is the Bickley-Naylor function

of third order. The general function of order ‘n’ is defined as

/2 T
Ki,(1) = f df sin™ 10 e sind
0

Similarly, the self collision probability P;; is obtained as

Pi=1———[" ["*[Ki3(0) - Kis(x)] dy do. (26b)

2nxiV; 0

10



Since the sources and scattering are assumed to be isotropic, the region-to-region

collision probabilities have no angular dependence.

2.4.2 Region to Surface Escape Probability
The expression for escape probability from region i to surface a, in eq. (19a), reduces to
the following form when projected on a 2D plane

(Tj+7s)

P = fd(pfdyf de sin?0 (e Snf — e smé Yy (2.77). (27)

4TV

The different components of region to surface escape probability are obtained using

expansion functions (25) in eq. (27). The expressions are given by

P = % 1T L K (nis) — Kis (x; + 75)1dy df. (28a)

Plsy = goeyJo 6 ;7 sin g [Kig(rs) = Kig (7 + 7)), (28b)

Ph, = —2V2pk, + 5 2 (T [P cos g [Kiy (1) — Kig(z +75)). (280)

Py, = 75| ~15pk, — 2VZpk, + 5o fy 40 [T [Kis(r) — Kis(r +7)]| - (289)
Ph, = S [-24 %, — 10VZpl, + 3 77 d6 27 (5 1c0s? b — 2)[Kis(zs)

Kis(t; + TS)]]. (28e)

PR, = 75| 8Pk, + 5 o dO ;7" cos §y singlKis(zy) — Kis(r + ]| (28)

Here not all the directions of # and intervals of y contribute to the integration. The

integration over € is limited to those directions which pass through surface a.

2.4.3 Surface to Region Probability

The zeroth component of surface to region collision probability is given by

2 2 max . .
P = ,T—Safo i fyymin [Kis(tis) — Kiz(t; + 755)]dy db. (29)

124

The surface to region probabilities are normally not computed by direct numerical
integration to save computational efforts. Reciprocity relation (23b) is utilized to directly

calculate these probabilities from escape probability.

11



2.4.4 Surface to Surface Transmission Probability
The general formula for transmission probability from surface f to surface a, in eq. (8d),

is written as follows in 2D geometry

1 . T N S
p:;g = Ef deo [ dy J'O” do sin?@ e sine 1/);; (_Q_n_) wg(ﬂ-n+). (30)
The zeroth component of surface to surface transmission probability is given by
2 2 Ymax 17
Py ==, "L Kiy (tss)dy df. 31

Here too, only those y and # intervals contribute to integration which pass through both
surfaces a and . The higher components of transmission probability are too complicated to be

presented here and are obtained using higher order representation functions (25) in (30) [17].

2.5 Computation of Collision Probability Integrals

The calculation of probabilities using Egs. (26) to (29) involves the evaluation of double
integrals over y and € numerically. These integrations are approximated by using numerical
quadrature for angle and space. The problem domain is considered under different angles of
rotation. For each value of @ in the quadrature, a set of parallel lines, called tracks, are drawn.
We have used equidistant ray tracking method for present study. The tracking method is

described in detail in Appendix A. If w,, and w, are the weights of 'y and 6 then

ff(y:e) dy do = Zp Zq WprAqf(:Vpﬂeq)' (32)

For evaluating these probabilities, two types of quadrature viz. equiangular and Gauss-

Legendre quadrature can be used for angular variable 6.

The tracking needs to be done only for a=0 to b=n, since the contribution from = to 2n
will be associated with the probability p;; which is symmetric to p;;. If we chose N angles

between 0 and &, then weights for equiangular quadrature are given by

wy=E2 =2 (33)
And the angular points are given by
0i=(i—%)WA=(i—§)%;Vi=1,N- (34)

12



The integration weights and points can also be obtained using the Gauss—Legendre
quadrature. The integrations weights and points in the Gauss—Legendre quadrature are selected

in such a way that:

[0 dxe= T wi f(x)). (35a)

is exact when f(x) is a polynomial of order (2N-1) or lower [18]. This can be ensured by
selecting x; for each order N as the zeros of the Legendre polynomials Py(x). Once the

integration points have been computed, the associated weights can be obtained using:

2

e enTy (35b)
If the limits of integration are a & b, we can use the following transformation
b ! !/
J, fG) dx = il wi f(x). (35¢)
such that
w! = @ w;. (35d)
xf =808y 4 O (35¢)

t 2 2
For integration limits of 0 to ©, we can use Gauss—Legendre points and weights corresponding to
N=2 to 20, and for 24, 28, 32, 64and 96.

For y integral, trapezoidal quadrature set is used. If the limits of y integration are from a

to b and if N, parallel lines are drawn, the separation between two lines or weight is given by

b—
wy = dy = &2 (36)

2.5 Normalization of Collision Probabilities

The collision probabilities calculated should satisty the reciprocity and conservation
relations given in Egs. (23) & (24). Since we calculate the collision probabilities using numerical
integrations, the conservation relations may not get satisfied due to discretizing error. The
conservation relations are enforced by several normalizing schemes [13]. Here we have adopted

a method proposed by Villarino et al [16]. In this method, we define

13



Pl = (w; + w)P;. (37a)
Plly = (Wq + Wg)Pqp (37b)

The conservation laws are ensured by requiring

Za(Wa + wp)Pgp = 1. (38a)

ZaWaPab + wy Zapab =1L (38b)
_ 1-Ya,a2bWaPab

o Ppp+XaPab (38¢)

where the indices a and b run over all regions and surfaces. The Eq. (36¢) is iteratively solved.
Initially all the w’s are assigned a value of 0.5, which is the value they would have if there were

no errors in the probabilities. The iteration process uses an under relaxation factor of 0.7 [16].

The solution for w¥*?! is assumed converged if
whkti_yk
max (Y28 < ¢, (39)
Wq

or after a preset number of iterations, currently 20. The value used for € is 10”. The advantage of
this method is that by using weight factors, probabilities which are zero remain zero e.g., the self

transmission probabilities P,,.

To enforce the conservation relation (24b) for higher components of probabilities, we

have used diagonal normalization scheme. In this scheme, the error is found using (24b) as

£y =80y — XL Pl — XS Ply Vv >1 (40)

This error is adjusted in the diagonal elements of transmission probability i.e.

Paa = P + €a- (41)

2.6 Use of Boundary Condition and Solution of CP Equations

The multigroup transport equations to be solved in a cell containing Ny, regions form a
linear system. The solution method described in [19] has been adopted. In the two linear
equations defined by Egs. (18) & (20), the source g; , written in terms of group source and self

scattering source, is given by

q; = 2ip;Vi + S, V. (42)

14



The group source §; is defined as

S; = <zg,=1 2998 + 2856, vsd ¢f ) (43)
9'#g
We define the vectors for collision rate
{f} = 29V (44a)
the partial currents
{+}a =SdJia and {j_}o =S/ e (44D)
and the source
s; = SV (44c)
the source q; given by (42) can be written in the vector form as
q=Cf+s. (45)
where C is a diagonal matrix defined by
(Chy = 82 (46)
Thus Egs. (18) & (20), can be written in the matrix for as
f= Pywaq+Py]. (47)
J* = Psyq+Pss ™. (48)

where we have defined Pyy as the matrix of region to region, Pyg as the matrix of surface to
region, Py as the matrix of region to surface and Pggas the surface to surface collision
probabilities respectively. The boundary condition used here is in the form of a relation between
the average outgoing angular flux on surface Sp and the average incoming angular flux on a

different surface S,. In matrix form this can be written as
J-=AJ*. (49a)

In the case of albedo boundary condition, the coupling boundary condition matrix can be written

as

AZ’; = Babapd’t. (49b)

15



where £, is the reflection coefficient at surface a. In case of total reflection at surface a, 5, = 1.
So Eq. (48) takes the form
J* = (1- APg) ™' Pgy q. (50)

Egs. (47) & (50) are iteratively solved using the conventional inner-outer iteration
scheme to calculate partial currents across the surfaces and collision rates in each region. Also a
self scattering reduction scheme is adopted for eqn. (47) i.e. all the information of self scattering

of a group is transferred to left side so that Eq. (47) takes the following form
f=>0-C)1(Pyys+Pys]). (51)

3. DESCRIPTION OF BENCHMARK

Zhang et al. [10] have proposed a simplified heterogeneous benchmark problem that is
typical of a high temperature reactor. The primary aim of benchmark is to assess the accuracy of
diffusion or transport methods for reactor calculations. The benchmark is derived from the
experimental data of High Temperature Engineering Test Reactor (HTTR) start-up experiments,
which was built by Japan in the late 1990s. The benchmark covers 2D/3D full core, single
constituent fuel block of core and single pincell configurations. The present paper describes the
results obtained for single pincell and single fuel block calculations. It is to be noted that the
benchmark problems are heterogeneous down to the pin i.e., the coated fuel particles and the
graphite matrix are homogenized and mixed into a fuel material.

The benchmark provides the six group macroscopic cross section for all the materials
required as obtained by a detailed lattice calculations using HELIOS code system. Due to this no
double heterogeneity treatment of TRISO fuel particle was required. The full details of
benchmark can be found in [1]. Here we give only some details of fuel blocks and fuel pins
analyzed. The fuel block and fuel pin, shown in Fig. 2 have a hexagonal shape. The fuel pin pitch
i1s 5.15cm and fuel pin diameter is 4.1cm. The fuel block consists of 33 fuel pins, 3 burnable
poison (BP) rods and one central graphite pin as shown in Fig. 2. The fuel block pitch is 36cm.

The fuel pin and fuel block consider seven cases of fuel enrichment ranging from 3.4 to 9.9 wt%.
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Fuel Pin(33)

BF Pin(3)

Fig. 4 — Fuel pin and Fuel Assembly Cells

3.1 Discretization of the Problem

In order to calculate multiplication factor and flux for the two problems studied, one
needs to calculate the four types of CP matrices defined in (12) to (15). For pincell geometry, the
mesh structure considered is shown in Fig. 5. The fuel and coolant regions were divided into
finer circular regions. The fuel region was divided in three regions of equal volume and outside
graphite region was divided into eight regions of equal thickness. As a result the pincell has
annular shells embedded in the hexagonal geometry. Due to annular structure inside the hexagon,
1D annular treatment was done to calculate region to region collision probabilities for circular
regions. Only for the outermost region 2D method was required. The albedo boundary condition

with reflection coefficient of unity is used at each of the six surfaces of the hexagonal pincell.

Fig. 5 - Meshl diVisi(;n inside singie hexz;gonal pincell
For fuel assembly calculation, the collision probability matrices need to be calculated
only for materially and geometrically distinct regions. The geometry of the hexagonal FA should
be modeled exactly. As seen in Fig. 4 there is a thin layer of graphite block beyond the regular

hexagonal structure in the fuel assembly. It is important to treat this region accurately. It is noted
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that in some recipes this thin region is artificially expanded into full regular hexagonal structure.
Any inaccurate modeling of this layer could create unwarranted errors in core calculation. To
alleviate this problem in the fuel assembly cell, beyond the regular hexagonal structure, two
different geometric meshes are identified which are designated as side mesh (Fig. 6a) and corner
mesh (Fig. 7a). The mesh division in the regular hexagonal cells is similar to what was used for
pincell calculation. The mesh division in the side and corner cells is as shown in the Figs. 6b &
7b. Within the regular hexagon structure, three distinct regions were identified viz. fuel pin, BP
pin and graphite pin. Thus there are totally five identified distinct zones for the fuel assembly
calculation. Once the CP matrices are computed for these distinct zones, the flux and
multiplication factor is calculated by an iterative procedure. The boundary condition is applied at
the outer boundary surfaces of side and corner meshes.

ey
T

Fig. 7a — Corner mesh Fig. 7b — Mesh division inside Corner mesh
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4. RESULTS AND DISCUSSION

The VISWAM results for single pincell and fuel block are compared with the benchmark
results. The results of MOCUM code system of Yang et al. [20] are also included for
comparison. MOCUM is based on the method of characteristics (MOC) and uses fine
unstructured triangular meshes for discretization of the geometry. The convergence criterion for
pincell calculation was taken as 10 for k., and 10® for flux, whereas, for FA calculation these
criterions are 107 and 10°° respectively. All the VISWAM results are obtained with 32 azimuthal
angles and a ray separation of 0.04cm. Table 1 gives the comparison of multiplication factor
calculated with PO model for single pincell with MOCUM & Monte Carlo results of benchmark
for all seven fuel enrichments. The results show a good agreement with a maximum error of
0.01% in k.. Table 2 gives the comparison of k., for seven fuel assembly types with PO model in
VISWAM. An error of (-0.18%) w.r.t. benchmark is obtained for first enrichment (-0.15% w.r.t.
MOCUM) whereas the error for all other enrichments is within £0.08% (£0.06% w.r.t.
MOCUM). Table 3 gives the results with VISWAM £, obtained using P1 and P2 expansion of
angular flux. The results with P1/P2 expansion show maximum error of -0.18%/-0.17% for first
enrichment. The maximum error for other enrichments is found within +£0.08% for both P1 and
P2 results. In the current problem with graphite moderator there is no steep flux gradient within
the fuel assembly as may be present in an assembly with light water as moderator. Therefore the
use of P1 expansion is rather adequate to get the results within desirable accuracy. Use of higher

order P2 expansion functions gives nearly same eigenvalue.

Tables 1 & 2 also compare the typical running time for VISWAM and MOCUM results.
The VISWAM results are obtained on a windows machine equipped with 3.0GHz dual core
processor and 2GB RAM. It is seen that VISWAM CPU time is significantly less compared to
MOCUM but the accuracy achieved is comparable. Also it should be noted that MOCUM code
is parallelized version and runs on advanced configuration machines whereas the VISWAM is
running in serial mode only. It is seen from Table 3 that the DP1 and DP2 models require 8 or 13
sec compared to 5 sec of DPO model due to the computation of extra components of CPs for

higher angular flux expansion.

Fig. 8 gives the comparison of fission density distribution, obtained using P2 expansion,

for first enrichment type with benchmark results. The comparison is good and shows a maximum
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deviation of 0.7%. No significant differences in fission density distribution were noted with PO

and P1 expansion for first enrichment. Figs. 9 to 14 give the fission density distribution for other

4enrichment types using PO and P2 expansion functions. This data is not available in the

benchmark. Only with increasing enrichment, a small difference appears in the two fission

density distributions.

Table 1 — Comparison of k.. for Pincell with VISWAM P0 Model

Enrich ko AK/k(%) w.r.t. Run Time(sec)
(v‘?tef;t)) VISWAM | MOCUM | Benchmark | Benchmark | MOCUM | VISWAM | MOCUM
34 1.13512 1.13516 1.13519 0.01 0.00 1.0 19.1
4.8 1.19575 1.19584 1.19577 0.00 0.01 1.0 14.5
5.2 1.20683 1.20694 1.20688 0.00 0.01 1.0 13.2
6.3 1.23524 1.23530 1.23531 0.01 0.01 1.0 12.0
6.7 1.24322 1.24333 1.24326 0.00 0.01 1.0 11.7
7.9 1.26042 1.26044 1.26044 0.00 0.00 1.0 10.7
9.9 1.28922 1.28926 1.28933 0.01 0.00 1.0 10.4
Table 2 — Comparison of k., for Fuel Assembly with VISWAM P0 Model
Enrichment ko AK/K(%) w.r.t. Run Time
(wt.%) VISWAM | Benchmark | MOCUM | Benchmark | MOCUM VISWAM MOC.UM
(sec) (min)
34 1.03930 1.04119 1.04084 -0.18 -0.15 5.0 4.48
4.8 1.15214 1.15307 1.15283 -0.08 -0.06 5.0 3.76
52 1.17212 1.17287 1.17265 -0.06 -0.05 5.0 3.61
6.3 1.22183 1.22212 1.22192 -0.02 -0.01 5.0 3.31
6.7 1.23790 1.23802 1.23787 -0.01 0.00 5.0 3.05
7.9 1.27344 1.27323 1.27305 0.02 0.03 5.0 2.80
9.9 1.32022 1.31962 1.31951 0.05 0.05 5.0 2.40
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Table 3 — Comparison of k., for Fuel Assembly with higher expansion of angular flux

P AK/K(%) w.rt.| VISWAM
Enrichment * Benchmark | Run Time (sec)
(Wt.%) DIYIISWAII\)/[PZ Benchmark | DP1 DP2 DP1 DP2
34 1.03936 | 1.03944 1.04119 -0.18 | -0.17 8.0 13.0
4.8 1.15238 | 1.15244 | 1.15307 -0.06 | -0.05 8.0 13.0
5.2 1.17238 | 1.17245 1.17287 -0.04 | -0.04 8.0 13.0
6.3 1.22217 | 1.22223 | 1.22212 0.00 | 0.01 8.0 13.0
6.7 1.23821 | 1.23826 | 1.23802 0.02 | 0.02 8.0 13.0
7.9 1.27385 | 1.27390 1.27323 0.05 0.05 8.0 13.0
9.9 1.32070 | 1.32074 | 1.31962 0.08 | 0.08 8.0 13.0
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Fig. 12 - Fission Density Distribution for 6.7%
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5. CONCLUSION

The lattice analysis codes in hexagonal geometry are needed because the reactor cores are
being designed increasingly with triangular pitch. The 2D collision probability method has been
applied to the high temperature test reactor benchmark problem in hexagonal geometry. In the
assembly cell problem, the adjacent cells have been linked using interface currents. The
incoming/outgoing angular flux at the pincell interface is expanded in Px functions. The
expansion is limited to P2. Reflective boundary condition is applied at the outermost surfaces.
The results are compared for a single fuel pin and fuel assembly cell calculations. The results
show a good agreement in k., for pincell and assembly calculation (within 0.01% and 0.18%).
The maximum difference in fission density distribution is 0.7% for the lowest enrichment. The
P1 expansion in angular flux at region interface shows better matching in k.. In the current
problem with graphite moderator there is no steep flux gradient within the fuel assembly as may
be present in an assembly with light water as moderator. Therefore the use of P1 expansion is
rather adequate to get the results within desirable accuracy. Use of higher order P2 expansion
functions gives nearly same eigenvalue. It is planned to test the VISWAM code against other
hexagonal assembly benchmark with strong heterogeneity like Gd cells and also as function of
burnup. The CP method is seen to be a competitive option to other methods such as MOC, due to

low running time and comparable accuracy.
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Appendix A
Method of Ray Tracking

A large part of the computational effort in two dimensional collision probability calculations is
incurred in the evaluation of the coefficient matrices of collision probabilities. The collision probability
integrals in two dimensions depend on azimuthal angle and space variable y. These integrals are
numerically evaluated by trapezoidal rule or other quadrature formula. This is normally known as ray
tracing. For present study, we have adopted equidistant ray tracing method. In this method, parallel rays
are drawn for each angle and their intersection with the hexagon or circular regions are found. The
coordinate system used for ray tracing is shown in Fig. A-1. The origin is taken as the centre of hexagon
or circle.
A.1  Definition of tracking line

For calculating tracks inside hexagon or circle, we need to find the intersection points with sides

of hexagon and circles. The tracking line is uniquely defined by a point on the line and its slope. The

»
»

(0,0)

Tracking Line

P(a.b)
a

Fig. A-1 Definition of origin
tracking line is shown in the Figure A-1. Its slope is defined by m; = tan a. We have to define a point on
this line to uniquely define it. For this a perpendicular OP is drawn on the tracking line from origin O.
If p is the length and (a, b) are the coordinates of the foot of perpendicular, then slope of

perpendicular is given as
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Equation of perpendicular y = myx + ¢
Since it passes through origin O, so ¢=0. Point P also lies on this perpendicular line. So
b =mya
Now, distance between points O & P is p. so
a? + b% = p?
a? + a*m3 = p?
p myp
a = =
Va+md) V1 +m))

—-p
V(@ +m?)

The coordinates (a, b) and slope m, uniquely define the tracking line. The value of p is chosen

b=mya=

initially as the side of hexagon for this hexagonal cell.

A.2  Intersection of tracking line with Circle

Once the tracking line is defined, its intersection points are computed with each circular region. A

circle is uniquely defined by coordinates of its centre (p, ¢) and radius ». The equation of circle is given as
x—pP+ O -q@?=r
For a line passing through point (x,, ¥,) and slope m we first calculate
C =y, —mx,
then we calculate following quantities

A=1+ m?
B=2m(c—q)—2p
C=p’+ (c—q)?—r?
D = B? — 4AC

If D > 0, the line intersects the circle. The two points of intersection are given as

—-B++D

x1= ,y]_: mx1+C
24
-B-vVD

Xy = ” sV, = mx, + ¢

These points are stored and then sorted in increasing or decreasing order. If the tracking line is
vertical (slope=o0) then considering equation of line x=k, we calculate

D=r?— (k—p)?
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If D > 0, the line intersects the circle. The two points of intersection are given as

x1=k;y1=p+\/5
x2=k;y2=p—\/5

After computing intersection points, the track length in a circle is computed as

t= (- x)2+ (¥, —y1)?
A.3  Intersection of tracking line with Hexagon
The intersection of tracking line with hexagon involves the intersection of line with hexagonal
surfaces. The surfaces of hexagon are numbered as shown in figure A-2. If the line crosses the hexagon, it

will intersect any two surfaces defining the hexagon. The equations of surfaces of hexagon are stored and

intersection with each surface checked at a time. Here we will describe to calculate the point of

intersection of two lines.

(xz'}’z/v

B(xp, y»)
Fig. A-2 Surfaces of Hexagon

IfA;x + By = C; and A,x + B,y = C, are the equations of two lines, then we calculate

D= Ale - A2B1

If | D|>0, the lines intersect and the point of intersection is give as
_ GB, =GBy (1A, — (A
T Y77

The hexagon surface is defined by two vertices. For surface AB, as shown in fig. A-2, the slope

of the surface can be obtained using
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Yb = Ya

m =
AB Xp — Xg

The intercept on y-axis can be obtained

Cap = Yp — MypXp
Now the equation of line can be written as

Y = MypX — CpB

or rearranging

—MyupX +Y = —Cap
Thus

Ay = —myp,B; =1,(; = —cyp

Similarly for tracking line defined in section A.1, we have
A, =—my,B, =1,C, = —c wherec =b —mya

The intersection point can be found using above formula. Once the intersection point is
calculated, we have to check whether it lies on hexagon. For this purpose, we will compare (x, y) with the
coordinates of the vertices of that surface. If the line intersects, say, surface AB (Fig. A-2), then point
(x,y) will lie on hexagon if x lies between x, & x; and y lies between y, & y,. After checking the
intersection with all six sides, we get two points of intersections denoted by (xq,y;) and (x3,y,) in
Figure A-2. Now we want to know which surface of the hexagon is intersected first. For this purpose, we
arrange both x; and x, intersection points in increasing order of their magnitude. With these points we
have associated surface numbers 1 and 2. This order of their magnitude will give us the order and number

of the surfaces encountered. The track length inside hexagon is again given by the formula

t = (x—x1)2 + (y2 — ¥1)?

The above procedure is repeated for all angles and all parallel lines of an angle. The coordinates
of intersection are stored for future calculation of optical length.

After tracking the full geometry, the volume of each zone is numerically computed. The formula

1
e = 15T g
a
m n

where t; is the track length in region i and a is the angle of integration. The ratio between true

for numerical volume is given by

and numerically integrated volume is a measure of integration accuracy and serves as a numerical check

for detecting any anomaly in ray tracing.
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