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1 Research Progress

It is emphasized in the 2015 NSAC Long Range Plan [1] that “understanding the structure of 
hadrons in terms of QCD’s quarks and gluons is one of the central goals of modern nuclear physics.” 
Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations 
of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with 
controlled statistical and systematic errors.

Since 1985, we have proposed and carried out first-principles calculations of nucleon structure 
and hadron spectroscopy using lattice QCD which entails both algorithmic development and large 
scale computer simulation. We started out by calculating the nucleon form factors - electromag
netic [2], axial-vector [3], nNN [4], and scalar [5] form factors, the quark spin contribution [6] to 
the proton spin, the strangeness magnetic moment [7], the quark orbital angular momentum [8], 
the quark momentum fraction [9], and the quark and glue decomposition of the proton momentum 
and angular momentum [10]. These first round of calculations were done with Wilson fermions in 
the ‘quenched’ approximation where the dynamical effects of the quarks in the sea are not taken 
into account in the Monte Carlo simulation to generate the background gauge configurations.

Beginning in 2000, we have started implementing the overlap fermion formulation into the 
spectroscopy and structure calculations [11, 12]. This is mainly because the overlap fermion honors 
chiral symmetry as in the continuum. It is going to be more and more important to take the 
symmetry into account as the simulations move closer to the physical point where the u and d 
quark masses are as light as a few MeV only. We began with lattices which have quark masses in 
the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors [13], 
charm and strange quark masses, the charmonium spectrum and the Ds meson decay constant 
fDs [14], the strangeness and charmness [15], the meson mass decomposition [16] and the strange 
quark spin from the anomalous Ward identity [17]. Recently, we have started to include multiple 
lattices with different lattice spacings and different volumes including large lattices at the physical 
pion mass point. We are getting quite close to being able to calculate the hadron structure at 
the physical point and to do the continuum and large volume extrapolations which is our ultimate 
aim. We have now finished several projects which have included these systematic corrections. They 
include the leptonic decay width of the p [18], the nN sigma and strange sigma terms [19], and the 
strange quark magnetic moment [20].

Over the years, we have also studied hadron spectroscopy with lattice calculations and in phe
nomenology. These include Roper resonance [21, 22], pentaquark state [23], charmonium spec
trum [24, 14], glueballs [25, 26, 27, 28], scalar mesons a0(1450) and a(600) [29] and other scalar 
mesons [30], and the 1-+ meson [31].

In addition, we have employed the canonical approach to explore the first order phase transition 
and the critical point at finite density and finite temperature [32, 33]. We have also discovered a 
new parton degree of freedom - the connected sea partons, from the path-integral formulation of the 
hadronic tensor [34, 35] which explains the experimentally observed Gottfried sum rule violation [34]. 
Combining experimental result on the strange parton distribution, the CT10 global fitting results 
of the total u and d anti-partons and the lattice result of the ratio of the momentum fraction of 
the strange vs that of u or d in the disconnected insertion, we have shown that the connected sea 
partons can be isolated [36].

In this final technical report, we shall present a few representative highlights that have been 
achieved in the project.
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2 Highlights

2.1 nN and strangeness sigma terms

As measures of explicit and spontaneous chiral symmetry breaking in the baryon sector, anN, defined 
as

OnN = m (N |uu + dd|N), (1)

where rh = (mu + md)/2 is the averaged light quark mass, and f^ defined as the strangeness &
term as a fraction of the nucleon mass

o-sN = ms (N |ss|N), fN = —, (2)
mN

are fundamental quantities which pertain to a wide range of issues in hadron physics. They include 
the quark mass contribution in the baryon which is related to the Higgs contribution to the observ
able matter [37, 38], the pattern of SU(3) breaking [37], nN and KN scatterings [39, 40], and kaon 
condensate in dense matter [41]. Using the sum rule of the nucleon mass, the heavy quark mass 
contribution can be deduced by that from the light flavors, in the heavy quark limit and also in the 
leading order of the coupling [42, 15, 38]. At the same time, precise values of the quark mass term 
for various flavors, from light to heavy, are of high interest for dark matter searches [43, 44, 45], 
where the popular candidate of dark matter (like the weakly interacting mass particle) interacts 
with the observable world throughout the Higgs couplings, so that the precise determination of the 
onN and osN can provide constraints on the dark matter candidates.

Phenomenologically, the onN term is typically extracted from the nN scattering amplitude. To 
lowest order in m2, the unphysical on-shell isospin-even nN scattering amplitude at the Cheng- 
Dashen point corresponds to o(q2 = 2m2) [39, 40] which can be determined from nN scattering 
via fixed-q2 dispersion relation [40]. onN at q2 = 0 can be extracted through a soft correlated two- 
pion form factor [46, 47, 48]. Analysis of the nN scattering amplitude to obtain onN (0) from the 
Lorentz covariant baryon chiral perturbation and the Cheng-Dashen low-energy theorem are also 
developed [49, 50, 51]. They give onN values in the range ~ 45 — 64 MeV, while the most recent 
analysis [51] gives 59.1(3.5) MeV.

Lattice calculation should be a good tool in giving reliable results to these quantities. Again, 
there is an issue about chiral symmetry. It was pointed out [52, 53] that due to explicit chiral 
symmetry breaking, the quark mass in the Wilson type fermions has an additive renormalization and 
the flavor-singlet and non-singlet quark masses renormalize differently. In this case, the renormalized 
strange scalar matrix element (N\ss\N}R can be written as

(N |ss|N }R
1
3

(Zo + 2Zg) (N\ss\N} + (Zo — Zg)(N|uu + dd|N} , (3)

where Z0 and Z8 are the flavor-singlet and flavor-octet renormalization constants respectively. Z0 
differs from Z8 by a disconnected diagram which involves a quark loop. In the massless renormal
ization scheme, one can calculate these renormalization constants perturbatively. For the massless 
case where VV = VLrVR + V-rVl a quark loop for the scalar density vanishes no matter how many 
gluon insertions there are on the loop, since the coupling involving % does not change helicity. 
Thus, the massless scalar quark loop is zero and Z0 = Z8. There is no mixing of the scalar matrix 
element with that of u and d. This is the same with the overlap fermion, since the overlap has
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Figure 1: The results of ayyv (upper panel) and (lower panel) from both phenomenology and 
lattice simulations. The narrow error bar for each data point is the statistical, and the broad one 
is that for the total uncertainty. The physical proton mass 938MeV is used to obtain in this 
work. They are color-coded in phenomenological and indirect approaches (green), Nf = 2 lattice 
calculations (blue), and Nf = 2 + 1 lattice calculations (red). Detailed references are given in 
Ref. [19].

4



chiral symmetry and the inverse of its massless quark propagator Dc anti-commutes with 75, i.e. 
{Dc, 75} = 0 as in the continuum.

This is not so for Wilson type fermion where its free quark propagator contains a term propor
tional to the Wilson r term which violates chiral symmetry and will give a non-zero contribution to 
the scalar matrix element at the massless limit, leading to Z0 = Z8. Since the u and d matrix ele
ments in the nucleon are not small, there can be a substantial flavor mixing at finite a. This lattice 
artifact due to non-chiral fermions can be removed by calculating Z0 and Z8 [54]. Furthermore, the 
direct calculation of the matrix element with Wilson type fermions faces the complication that the 
sigma term with bare quark mass is not renormalization group invariant. This can also be corrected 
with the introduction of various renormalization constants to satisfy the Ward identities [54]. All 
of these involve additional work and will introduce additional errors. On the contrary, there is no 
flavor mixing in the overlap fermion and the sigma terms are renormalization group invariant with 
bare mass and bare matrix element, since the renormalization constants of quark mass and scalar 
operator cancel, i.e. ZmZs = 1 due to chiral symmetry. For the latest calculation with overlap 
fermion on 2 + 1 flavor domain wall fermion gauge configurations for several ensembles with dif
ferent lattice spacings, volume, and sea masses including one at the physical pion mass, the global 
fit gives the prediction of = 45.9(7.4)(2.8) MeV and asN = 40.2(11.7)(3.5) MeV. This value 
of anN has a two-sigma tension with the recent results based on Roy-Steiner equations [51] which 
gives = 59.1(3.5) MeV.

To conclude, we believe that to calculate anN and asN which are fundamental quantities reflecting 
both the explicit and spontaneous chiral symmetry, it is theoretically clean and straightforward 
procedure-wise to calculate them with chiral fermions on the lattice in order to obtain reliable 
results without the complication of renormalization and flavor-mixing as compared to non-chiral 
fermions.

2.2 Quark spin and orbital angular momentum

The quark spin content of the nucleon was found to be much smaller than that expected from the 
quark model by the polarized deep inelastic lepton-nucleon scattering experiments and the recent 
global analysis reveals that the total quark spin contributes only ~ 25% to the proton spin [55]. 
This is dubbed ‘proton spin crisis’ since no model seems to be able to explain it convincingly and, 
moreover, quantitatively.

Once again, first principle lattice calculation should be able to address this issue. The ideal 
calculation would be to use the conserved axial-vector current of the chiral fermions which satisfies 
the anomalous Ward identity (AWI) on lattice at finite lattice spacing. However, it is somewhat 
involved to construct the current itself for the overlap fermion [56]. Before it is implemented, one 
can use the AWI as the normalization condition for the simpler local axial-vector current

K^A^ = 2mP - 2iNfq, (4)

where A* = Y*i=u,d,s %dlhY5(1 — y Dov)%* is the local singlet axial-vector current and
mP = Ei=u,d,s mi^i%75(1 — 2Dovis the pseudoscalar density with Dov being the massless overlap
operator and q the local topological charge as derived in the Jacobian factor from the fermion 
determinant under the chiral transformation whose local version is equal to yA2 trcG^uG(x) in 
the continuum [57], i.e.

11
q(x)=Tr 75(2Dov(x,x) — 1)^ 16^2trc G^vG^v(x). (5)
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ka in Eq. (4) is the finite lattice renormalization factor (often referred to as ZA in the literature 
for the flavor non-singlet case) needed for the local axial-vector current to satisfy the AWI on the 
lattice with finite lattice spacing, much like the finite renormalization for the vector and non-singlet 
axial-vector currents. We shall call it lattice normalization. On the other hand, the mP and q 
defined with the overlap operators do not have multiplicative renormalization. There is a two-loop 
renormalization of the singlet A* and the topological charge q mixes with c^A*. It turns out that 
they are the same. Thus, the renormalized AWI is the same as the unrenormalized AWI (but 
normalized) to the a2s order. To utilize the AWI, one needs to calculate the matrix elements of 2mP 
and 2q on the r.h.s. of the AWI and extrapolate to q2 = 0. However, the smallest |q21 is larger 
than the pion mass squared on the lattices that we work on, the extrapolation to q2 is not reliable. 
Instead, we shall match the form factors at finite |q2| from both sides, i.e.

2mN KA gA(q2) + (q2) = 2mgP (?2) + Nf gc(q2). (6)

where the singlet gA(q2) and the induced pseudoscalar hA(q2) are the bare form factors. 2mgP(q2) 
and gG(q) are the form factors for the pseudoscalar current and topology respectively. From this 
normalization condition one can determine ka and the normalized gA is KAg\ (0). This has been 
employed in the calculation of the strange quark spin to find As + As = —0.0403(44)(61) [17]. This 
is more negative than the other lattice calculations with and axial-vector current, mainly because 
ka = 1.36(4) is found to be larger than that of the flavor-octet axial-vector current. The lesson here 
is that, unless the conserved current is used to carry out the calculation, it is essential to adopt the 
AWI to obtain the normalization of the local axial-vector current. This is possible with the overlap 
fermion.

While the final numbers on the u and d spin fraction which include the connected insertion 
are still being worked out, the initial results indicate that it is the larger negative 2mP matrix 
elements that cancel the positive topological charge term in the triangle anomaly in the disconnected 
insertions that lead to a small gA.

There are various ways to decompose the proton spin into quark and glue spins and orbital 
angular momenta [58, 59]. From the symmetrized energy-momentum tensor of QCD (the Belinfante 
form), it is shown [60] that the proton spin can be decomposed as

JQCD Jq + Jg — ,, J q + L q + J(
2 q 91 (7)

where the quark angular momentum Jq is the sum of quark spin and orbital angular momentum,

1
2

Jq = ^Jq + Lq = ^ d3X ^ ^Y?5 ^ ^ {X X (iD)} ^

and each of which is gauge invariant. The glue angular momentum operator

J9 d3x x X (J X B)

(8)

(9)

is also gauge invariant. However, it cannot be further divided into the glue spin and orbital angular 
momentum gauge invariantly with the Belinfante tensor.

Since it has a large finite volume effect to calculate the operator with a spatial r on the lattice 
with periodic boundary condition, one can instead calculate the quark and glue momentum and an
gular momentum from their form factors Ty(q2) and T2(q2) and obtain the momentum and angular
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momentum fractions from their forward limits, i.e. (x) = 7\(0) and J = |(Ti(0) + T2(0)), much 
like the electric charge and magnetic moment from the forward Dirac and Pauli form factors iq(0) 
and F2(0). After determining the quark angular momentum, the quark orbital angular momentum 
is obtained by subtracting the quark spin from it. This has been carried out in a quenched ap
proximation [10]. The OAM fractions 2(L^in) for the u and d quarks in the Cl have different signs 
and add up to 0.01(10), i.e. essentially zero. This is the same pattern which has been seen with 
dynamical fermion configurations and light quarks, as pointed out earlier. The large OAM fractions 
2(Lj[in) for the u/d and s quarks in the DI is due to the fact that g\ in the DI is large and negative, 
about —0.12(1) for each of the three flavors. All together, the quark OAM constitutes a fraction of 
0.47(13) of the nucleon spin. The majority of it comes from the DI.

25(12)%25(12)% 28(8)%

14(1)%14(1)%32(2)% 39(15)%

1(10)%

Figure 2: Pie charts for the quark spin, quark orbital angular momentum and gluon angular mo
mentum contributions to the proton spin. The left panel show the quark contributions separately 
for Cl and DI, and the right panel shows the quark contributions for each flavor with Cl and DI 
summed together for u and d quarks.

As far as the spin decomposition is concerned, it is found that the quark spin constitutes 25(12)% 
of the proton spin, the gluon total AM takes 28(8)% and the rest is due to the quark kinetic OAM 
which is 47(13)%.

Since this calculation is based on a quenched approximation which is known to contain uncon
trolled systematic errors, it is essential to repeat this calculation with dynamical fermions of light 
quarks and large physical volume. However, we expect that the quark OAM fraction may still be 
large in the dynamical calculation.

In the naive constituent quark model, the proton spin comes entirely from the quark spin. On 
the other hand, in the Skyrnie model [61] the proton spin originates solely from the OAM of the 
collective rotational motion of the pion field [62]. What is found in the present lattice calculation 
suggests that the QCD picture, aside from the gluon contribution, is somewhere in between these 
two models, indicating a large contribution of the quark OAM due to the meson cloud (qq pairs in 
the higher Pock space) in the nucleon.
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2.3 Strange Quark Magnetic Moment in the Nucleon

The determination of the strange (s) quark contribution to nucleon electromagnetic (EM) form 
factors is of immense importance since this is a pure sea quark effect. A nonzero value of Sachs 
strange electric form factor G% at any Q2 ^ 0 would mean that the spatial distribution of s 
and s quarks are not the same in the nucleon. Since the extraction of the vector strange matrix 
elements (sq^s) was proposed in [63, 64, 65] via parity-violating e — N scattering for which the 
dominant contribution arises from interference between photon (7) and weak boson (Z°) exchanges. 
A considerable number of experimental efforts by the SAMPLE, HAPPEX, GO, and A4 experiments 
have been going on for the last two decades. The world data constrains that GSM(0) contributes less 
than 6% and (r2)e contributes less than 5% to the magnetic moment and the mean-square charge 
radius of the proton respectively [66]. However, all these experimental results are limited by rather 
sizable error bars. The two recent global analyses give GSM(Q2 = 0.1 (GeV/c)2) = 0.29 ± 0.21 [67] 
and —0.26 ± 0.26 [68] which are consistent with zero and differ in sign in their central values.

1 1 1 1 1 1
Global Analysis (Q2=0.1 GeV2)[17] 1-------------#------------- 1

'---------------- #---------------- ' Global Analysis (Q2=0.1 GeV2)[18]
1-----------▲----------- 1 Leinweber et al. [25]

1A1 Leinweber et al. [26]
hA-h Shanahan et al. [29]

'------------ X------------ ' S. J. Dong et al. [30]
Doi et al. [31]

X Green et al. [32]

X This work (xQCD)

X
________ 1________ 1________ 1_

This work (xQCD) (Q2=0.1 GeV2)
_______ I________ I________ I____

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
G\,(0)

Figure 3: Comparison of some of the many determinations of strange magnetic moment. Results 
in the red are from global analysis of world data, results in the green are from indirect calculations, 
and results in the blue are from lattice QCD calculations.

Despite tremendous theoretical efforts, a detailed convincing understanding about the sign and 
magnitude of strange EM form factors is still lacking. In view of the experimental and theoretical 
uncertainties on the strange quark magnetic moment, we we have performed a robust first-principles 
lattice QCD calculation [20] using three different 2 + 1 flavor dynamical fermion lattice ensembles 
including, for the first time, the physical pion mass with chiral fermion to explore the quark mass 
dependence and with finite lattice spacing and volume corrections to determine the strange quark 
matrix elements in the vector channel. We have performed a two-state fit where we combined both 
the ratio method and the summed-ratio method to control excited-state contamination. The sta
tistical error is greatly reduced by improving the nucleon propagator with low-mode substitution 
and quark loop with low-mode average. To explore the strange vector form factors at different mo
mentum transfers, we implemented model-independent z—expansion fits. Given our precise lattice
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prediction for the strange quark magnetic moment of GsM(0) = —0.073(19)^# and strange charge 
radius {r2s)E = -0.0046(24) fm2 at the physical point with systematic errors included, we anticipate 
these results will be verified by experiments in the future and, together with experimental inputs, 
can lead to more precise determination of various weak form factors. We present Fig. 3 to compare 
our result of GSM(0) and GSM(Q2 = 0.1 GeV2) = —0.047(11)(06) with some other measurements of 
GM(0) and a global fit of GsM at Q2 = 0.1 GeV2.
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