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Abstract

Zonal flows, initially driven by ion-temperature-gradient turbulence, may evolve due to the 

neoclassic polarization in a collisionless tokamak plasma. In this presentation, the form of the 

residual zonal flow is presented for tokamak plasmas rotating toroidally at arbitrary velocity. 

The gyro-kinetic equation is analytically solved to give the expression of residual zonal flows 

with arbitrary rotating velocity. The zonal flow levei decreases as the rotating velocity 

increases. The numerical evaluation is in good agreement with the previous simulation result 

for high aspect ratio tokamaks.

I. INTRODUCTION

Zonal flows (ZFs) in magnetic confinement devices are symmetric low frequency electrostatic 

perturbations with long radial wave length. They are on the one hand excited by the nonlinear 

interaction of drift wave turbulence, and on the other hand regulate the turbulence level 

through the radially sheared plasma flow and meanwhile as a turbulence energy sink1’2. A 

recent numerical fluid simulation confirmed that ZFs play a dominant role in the saturation of 

turbulence in the core of tokamak plasmas where the safety factor is low3. Recent gyro-kinetic 

simulations of ion temperature gradient (ITG) modes indicated that the plasma heat flux grows
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to a high level without saturation when the plasma pressure ratio exceeds a threshold. The 

mechanism behind this phenomenon is the decrease of zonal flow level caused by the 

magnetic flutter in plasmas with high thermal/magnetic pressure ratio4’5. The reduction of 

turbulence transport levels was also observed in recent stellarator experiments as ZFs 

presented6. Because of the significant role played by ZFs in plasma turbulence evolution, the 

investigation of their driving, damping and time evolution is thus of critical importance in 

determination of turbulence levels for a tokamak discharge. Hence, in the past two decades, 

ZFs remain to be one of active research areas in fusion plasmas.

The long time (much longer than the ion transit/bounce time) evolution of the flow is 

determined by the neoclassic polarization, and is expressed as

^(0 =（1 + 1.6^2/VF）'!^(0)(1)

in a large aspect ratio circular cross section approximation, where q is the safety factor and 

s is the inverse aspect ratio. This result is called the residual zonal flow in later 

publications8-10. Rosenbluth and Hinton further suggested that this result be adopted in 

gyro-fluid codes to improve turbulence simulations.

Recent experiments have revealed that plasma rotation, or in other words the plasma mean 

mass flow, seems ubiquitous in tokamak plasmas, even without momentum injection'!'12. 

Hence, it is necessary to extend the study for static plasmas to that for plasmas with rotations. 

The eigen-value problem of geodesic acoustic modes in such toroidally rotating plasmas was 

investigated by some authors using fluid models. The mean flow effect on zonal flow 

generation in slab geometry was considered by Lashkin15. Recent kinetic numerical 

simulations for rotating plasmas indicated that the residual zonal flow level decreases with 

increasing rotation16.

In this work, we present a general expression for residual ZFs in a collisionless tokamak
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plasma rotating toroidally at arbitraiy velocity. The gyro-kinetic equation for the rotating 

plasma is firstly solved as an initial value problem for high and low Mach numbers. Then a 

general form of residual ZFs in the intermediate velocity region is introduced through 

interpolation. The result in the present work is in good agreement with the kinetic numerical 

simulation for high aspect ratio tokamaks.

n. STARTING EQUATIONS

The linearized gyro-kinetic equation developed by Artun and Tang18 for toroidally rotating 

plasmas is solved in response to an initial axisymmetric source potential driven by ITG 

turbulence. The velocity of equilibrium toroidal flow is V = ®ft (y)7?2 ▽ぐ，with the toroidal 

angle variable，7? the major radius, i// the label of magnetic surfaces and the

angular velocity. We introduce a new velocity variable c = v-V and define the guiding 

center position X = x-p, where x is the particle position, p = bxc/Q is the gyro-radius 

with b the unit vector along equilibrium magnetic field and Q. = eB/m is the 

gyro-frequency. The total particle distribution function is f = F0+Sf , with Fo the 

equilibrium distribution. The perturbation distribution 8f is the summation of two parts, 

Sf = (e^)5F0 / dE + Sh, where （/）is the perturbation of electrostatic potential and E is the

energy variable to be defined in Eq. (4). The equation for the non-adiabatic part 说，in the 

electrostatic case, is17

\Sh = ~e

(2)

- + (c1(b + V + CD

with the drift velocity and energy variable

b + V

—VO b + V).(VV + c"Vb) (3)今・+
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where Jo = Jo (た丄 p) is the usual Bessel function, Snl is the initial source contributed from 

the nonlinear interaction of ITG turbulence,①〇 is the equilibrium electrostatic potential. 

We have written potential perturbation in an eikonal form, i. e. ^(x) =（j）k exp[z’S(x上)],and 

defined k± = VS.rfhe equilibrium distribution is a function of two adiabatic invariables, the

energy variable given by Eq. (4) and the magnetic moment variable defined as 

// =(1/ 2B)mc 丄.rhe usual form of the equilibrium distribution is

Fo=^T^^P（-E/T) (5)
vr n

where T = T(y/) is temperature and v7. = (277 w)1’2.

Thus far, particle species are not distinguished. For a simple plasma consisting of electrons

and one species of ions with unit charge, the equilibrium quasi-neutrality condition requires 

the equilibrium potential to take the form18'20

mV2
° 2べ1+ぺ ⑹

where て= TeITt. For plasmas with multiple ions the potential can only be obtained by a

numerical procedure. In the present work, for simplicity, we adopt the form of Eq. (6) and the 

energy variable is thus written as

„ m 2 m 2 m E = — Ci,H— C |-----------
2 11 2 x 2(l + r) ⑺V2

The perturbation distribution is also written in an eikonal form, /. e. Sh = Shk expO^S^X丄）].

The perturbative potential is axisymmetric with toroidal mode number z? = 0 and dominant 

poloidal mode number m = 0, so that the eikonal is only the function of . It is obvious that

Q
terms involving V-----and the second term on the right hand side of Eq. (2) are both equal
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to 0. Making use of the explicit form VV = - V^VJ?) + J?2V^V^9 it is ready to

obtain

where we have taken the equilibrium magnetic field to be B = V^x V^/ + 7V（^.

Eq. (2) is then reduced to

dt
-+ Cub • V + Cub •

初)]卜 =J0e^^ + iJ0手S’叫糾b • VT?2 十みF。 ⑼

where

\

+ (OpR:
J

Q (10)

Noticing that S'=た丄 /1 Vy 卜た丄 / 7?/?^, we get Q~ k±Sb, where 8b is the ion orbit width. 

Q is used as a small parameter for the series expansions in the following section.

The potential is derived using the quasi-neutrality condition

~~no^k +\d\JaShik = —n0^k +^d3\8hek (11)

where the nonperturbative particle density is no longer a surface function, instead it is

mV1
n,=\d\F^N^e^ (12)

Eqs. (9) and (11) form a closure to obtain the potential evolution. We have solved the long 

time evolution of potential for sonic flow cases in Ref.17, and the form of residual ZFs is 

exactly the same as the R-H form to the order of O(Q2、.

in. RESIDUAL ZONAL FLOWS AT LOW ROTATION VELOCITY

In this section, we consider a plasma rotating at very low speed, i. e. a>R~ d I dt and

the evolution time is much longer than the ion bounce/transit time. The leading order equation
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for ions, from Eq. (9), is then

[C|ib-v+C||b-v（/e）K=o （i3）

We have made an expansion of the distribution by the ordering of ml a）b. Writing the solution 

in the form Shk0 = g exp(-z'0, one obtains 

b-Vg = 0 (14)

The next ordering components of Eq. (9) for ions yield

备(讲叫+[¥•▽+ゅ■▽（ぬ)K吻，警+以。平輪，籾2+城(is)

Multiplying by e'Q on both sides and taking the orbit average, one reaches

ltg = 7^^  ̂+ i や S’4 • VT?2 + 冗 F,o (16)

where the orbit average is defined as

_ ^AdU|a|
----------- (17)

the integration is carried out along the trajectory of particles while its poloidal projection forms

a closed line.

The electron distribution is readily obtained from Eq. (9) to be

泳*=ぺも1戰(18)

For ions, we need to specify the source term. For ITG turbulence, we take Sek = 0 and 

Sik = [dn{G)In0]5(t) . The potential perturbation is accompanied by an initial density 

perturbation in a few gyro-periods due to the classical polarization and quasi-neutrality 

condition. Thus, we have7 加（0)=(た±/\)2 (e/7\)么（0) , where

Taking the Laplace transformation of Eq. (16), noting the time scale separation between the 

particle transition/bounce and the potential evolution, one obtains
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p/r 1
G(p) = -^Joe^k(p) + - 

T, P

(19)

eF, ，-miFi
，〇 (た丄A)2^(0) + i-^-S'a>RJoeiQc,b- VR^k(P)

where <?(/?) = £ g(t)e—ptdt and the same operation to get(77).

Making Laplace transformation and the surface average on Eq.(11), inserting Eqs. (18) and

(19), one finally obtains

（M0XW 冷。

① aO) = —
气。-^^\J0e-lQJ^Fl0 - A d\^S'coRJ0elQc^ - V7?2

(20)
p B v J B B

It is obvious that the second term in the denominator is zero since the term under integration is 

an odd function of velocity. The denominator can be further simplified. Using

2兀BJ3v = d3c = -djLidE we notice that
(Jv =±1 m

—Jt/3Vy4 = ^ —Jt/3Vyl (21)
B B

Making the power expansion

Joe,Q =l-iQ-Q2/2-(ktp)2/^ (22)

and keeping up toO(Q2) in the denominator of (20), one reaches

(た丄A)2卜。〉A⑼
(23)

where〈z?0〉=奉
nQdl

B

^M = -
P

(た丄A)2〈/7o〉+ f'^Jゴ

B Q:

Eq. (23) has exactly the same formas that ofR-H except for the definitions of Q and the orbit

average.

We consider a large aspect ratio tokamak with circular cross section and set 1 = BQRQ in 

Eq. (10). Inserting (10) in (23)，using (21) and making an inverse Laplace transformation, one
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can write the residual ZFs in the form of Eq.(1)

^) = (l + 72F(M)/V?y^(0) (24)

with q 二 rBQl R0Bp the usual safety factor, s = r/R0 the inverse aspect ratio and 

= + (25a)

綱=く。〉12…f jJd3 v[(¥。/对-(c,B0/B）2Jfi0 (25b)

= 、R/Rj-(R/Rf Fl0 (25c)

where we define the Mach number M = &rR0 /[2(3^ + 7j)/m,]1/2 and v, = (7； / «7,)1/2.

Eqs. (24) (25) are derived under the assumption of slow rotation, i. e. M«l. Obviously,

the R-H result is recovered for M = Q.

In the previous work, we have derived residual ZFs for M~l in the form of Eq. (24) with 

F2(M) = 0. It is difficult to solve the problem for arbitrary flow velocity since the ordering 

expansion of Eq. (9) is not applicable except for M ~ 0 and M 〜1.We can obtain the form 

of residual ZFs for arbitraiy Mach numbers through an interpolation. One such a 

generalization is

聯トマ:〉％2 Rv (m)4-⑽パ匕（26）

with f a large number to ensure that - 0 for 71/ ~ 1.In the next section, we show

that F2(M) is negligible in the whole range of M.

IV NUMERICAL RESULTS OF RESIDUAL ZFS AND COMPARISON WITH

SIMULATION

In this section, we give some numerical results of residual ZFs for a large aspect ratio circular 

tokamak. The major radius R = Ro +rcosd , the equilibrium magnetic field
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5 = 5。/(I + £ cos の.Then in the power expansion of s we have 

〈Z7O〉= 2叫ゆ,[1 + (1.5 + A/2)M2s2 十…]/尽 (27)

for convenience we introduce a = l + (1.5 + M2)M2s2 +■■■.

It is straightforward to cany out the integration for the first parts in the square brackets of (25b) 

and (26) for any Mach number. Also in the power series of s, one obtains

,3/2 |l + (1.5 + 3.5^2+M4k2+- Bo
27rqR0N0eM J B

(28)

and

F2(M) =
2(1+て)が_ダ

os3/2
1+ 5 + 5.5が+M4k2 + - かか楠\ (29)

1
<7£

To perform integrations in (28) (29)，we introduce two variables: E 二 E + AM and

又= ，where AM/m =-----R 次勤”一 and = 7?〇(1 土 ど）is the maximum/minimum
E 2(1 + r)

values of R . Then, from Eq. (7)，we obtain the parallel velocity

I c\\ l=

l/2r
mco

2£(l + r)

il/2

(30)R

The regions of passing and trapped particles can be figured out in (//,£) as shown in Fig.1

of Ref.17. It is obvious that only passing particles contribute to the integral in (28) while all 

particles contribute in (29). The integration over passing particles is

W(…)加£ = ♦脚/…)⑹5。脚 （31)

where フ=1—A and AA = AM-Am.

For small s, we can use the expansion technique to carry out the integration in (28)，the 

process is tedious but straightforward8,1 °. The final result involves the incomplete Gamma 

fhnction C+ x3/2~ke~xdx. Further analytical expression is impossible for arbitrary M values. 

For M~l, we have made an adiabatic expansion of the incomplete Gamma function and 

given an approximate expression17

175



F, (M) = 4.福3 + 0.32M + 0.6671/-'+0.015M~3 +(0.5 + 2.5M2 - 2M4>ra + …(32)

For M ~0, we can make a Taylor series expansion in evaluating the incomplete Gamma 

function and get an approximate expression

F,{M) = 1.6 + 3.34M2 -1,6M4 + (0.5-2M^sin + (0.375-2AM' +3.9M4> +••- (33)

It is difficult to find such approximate expressions for F2 (M) since it is much involved to 

have an integration over trapped particles in (29). We have also calculated F'(M) and 

F2 (M) by numerically carrying out the integration in (28) and (29).

Plotted in Fig.1 are the curves of and F2{M), with parameters q = 2.5, s = 0.3

and = 10. The horizontal axis is labeled by M2 instead of Af since it is M~ that 

appears in most formulas. Numerical and approximate expansion results of are in

good agreement. It is obvious that F2 (M) is negligible since it accounts for less than 5% of 

F(M) for the whole range of M. In Fig. 2 we plot the level of residual ZFs changing with 

the square Mach number, as well as the R-H result given by 

F(M) s 1.6 + 0.5s1’2 + 0.3756 + ….The level of ZFs decreases with increasing Mach number 

which is in qualitative agreement with a recent numerical gyro-kinetic simulation16. The 

physical explanation is that in a rotating plasma the fraction of trapped particles increases 

because of the inertial forces and as a result the neoclassic polarization effect increases to 

lower the residual ZFs. To have a quantitative comparison with the numerical simulation, we 

calculate residual ZFs using the same parameters as those in Ref.16. Results are shown in Fig. 

3 with the horizontal axis labeled by . Making a careful comparison between Fig. 3 and 

the Fig.12 of Ref.16, we notice that good agreement is achieved for low £ values while 

higher discrepancies appear for higher £ values. It is understandable because we have made 

Taylor series expansions in to derive (28) and (29), higher s may bring about larger 

errors in expansions.
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V. SUMMARY AND DISCUSSION

In this work a general form of residual ZFs in a tokamak plasma toroidally rotating at arbitrary 

velocity is presented. We first solve the gyro-kinetic equation by ordering expansion for low 

rotation velocity and then apply the quasi-neutrality condition to derive the long time potential 

evolution. The form of residual ZFs at low Mach numbers is given by Eq. (24) together with 

Eqs. (25a-c). The generalized form is given by Eq. (24) together with Eqs. (25a,b) and (26). 

Numerical evaluation indicates that in Eq. (25a) F2 is much lower than for the whole 

range of Mach numbers. If the F2 term is neglected, the form of residual ZFs given by Eq. 

(24) is exactly the same as the R-H form except for the definition of orbit average. This is not a 

mere coincidency. The neoclassic polarization arises from the difference of guiding center 

orbits between ions and electrons. If we transform to the rotating framework, process of the 

neoclassic polarization would be the same except for that the drift of single particles is 

changed by inertial forces, which is embodied m the definition of orbit average. Although 

expressions are the same, the numerical result is different due to the different definition of 

orbit average, the different fraction of trapped particles and the non-uniformity of density on 

magnetic surfaces.

Numerical evaluation indicates that the level of residual ZFs decreases with increasing Mach 

numbers which is qualitative agreement with previous gyro-kinetic simulations. Quantitative 

agreement is satisfactoiy in high aspect ratio limit. The discrepancy in lower aspect ratio is due 

to the power series expansion in inverse aspect ratio in our calculation. So the general 

expression given by Eq. (24) is valid for arbitraiy rotation velocity and can be adopted in 

plasma simulations.
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Fig.1 Values of F} and r2 , with parameters q = 2.5 , £ = 0.3 and f = 10.
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Fig. 2 The residual zonal flow level changes with squared Mach numbers with parameters q = 2.5, £ = 0.3 and

=10. Solid line is the result by numerically carrying out the integration in (25b) and (26). Dot line is the result given by

(24) and (33) with F2 neglected. Dash line is given by (24) and (32).
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Fig. 3 The residual zonal flow level changes with Mach numbers with parameters q = 1.1 and g =10 for different 8 

values.
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