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Abstract

In this paper a stochastic approach to solve the probability of backward runaway. A stochastic 
differential equation for electrons in fully ionized plasma is derived using Cadjan-lvanov method. 
An energy-preserving algorithm is presented. Using this method, the backward runaway 
probability is calculated statically.

Introduction

In fully ionized plasma, when an electron is moving along external electric field, it suffers from a 
competition between electric field and the velocity drag —v/v3 due to collisions, if the velocity 
is small enough that the velocity drag dominant, the electron will be stopped by collisions. But if 
the velocity is high and the electric field is larger, it will be accelerated to extreme high velocity 
until is hit the boundary. This phenomenon is called the forward runaway. The Dreicer velocity[l] 
indicates which electrons have high enough velocity to run away.

However, if the initial velocity of an electrons is in the opposite direction of the external electric 
field, it is not certain to run away or be stopped. If an electrons gains a high perpendicular velocity 
large enough before its parallel velocity reduces to zero, it could transformed into a forward 
runaway electron, otherwise, it will be stopped. Since the collision effect is a random factor, an 
electrons has a certain probability to run away[2].

This paper is organized as following, In Section. II, the stochastic differential equation is derived for 
electrons in fully ionized plasma. In Section. Ill, an energy-preserving algorithm is present to 
numerically solve the SDEs. And the simulation results are presented in Section IV.

Stochastic Differential Equation for Lorentz Plasma

The distribution function of runaway electrons obeys Boltzmann equation with collisional operator
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For electron-ion collision with being the charge carried by ion, Lorentz collision term is included
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For electron-electron collision, it should be noted that a velocity drag damping is introduced 

^v2I — vv df\■ ' -4- — ■ • I,3(孰 dv 2dv
ro sum up, the final Boltzmann equation reads[l,2]

ダボ—
dt \m

df
dv

r（l + Zi) d (v2I ■
2 dv

vv
(2)

Boltzmann equation for spatial homogeneous Lorentz plasma can be rewritten in form 
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ft can also be solved by statistics over solutions of a Stratonovich stochastic equation[3,4],
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One can easily verify the square root by multiplication.

The final Boltzmann equation with collisions of electrons and ions included is 
v\ df r(l + ZJ d (v2l—vv df\df r+

dt ' \m * v3/ dv 2 dv 
The corresponding stochastic differential equation is
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Which is renormalized parameters by v = v/vDreicer , t = t/rDreicer , where TDreicer =

^Dreicer/^f = WQてDreciert)/■yfiDrecter，E = ~/^Q> where Fq — /^Dreicer

The dimensionless equation is

v、 
v3/
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Energy-Preserving Algorithms

For dX(t) = "(X, t)dt + a(X,t)odWt in Stratonovich sense. 
The midpoint implicit method[5, 6] is

Xq = Xq

193



xp - ="(ヲ(%p+ズ r~i)'2 (ら+~—i))へ +

び(芝（XP + X/Lx),-^ 4-

Where

⑸

二Ah，LtW < Ah 
△脚=レ，,|厶，| <Ah

、Ah, >Ah
Ah = yj2k\ ln/i|, h = min(Z^) and fe > 1.And W is the standard Winer process. It can easily 
to proof that this algorithm preserves that energy of an electron.

Simulation Results

A sample solution path of a test electron without velocity drag is plotted in Fig.1.Because of the 
energy is conserved Jt looks like a random walk on energy spherical surface. The energy of using 
energy-preserving method is compared with commonly used Euler-Maruyama[7] method in Fig. 2. 
It can be seen that the energy is numerically conserved.
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Fig.1 A sample solution process of electron
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Fig. 2 Energy-time of the sample process. Midpoint method preserves the energy exactly.

In Fig. 3, the left side shows the typical backward runaway and the stopped trajectories. Sample 
electrons are all initialized at velocity v0 = (—5,0,0)vD? external electric field is set to qE = 
(1,0,0)Fル time step for simulation is At = td/500 and simulation ends at tend =10td. Charge 
carried by ion is =1・ When the magnitude of velocity is less than 0.1vD, the particle is 
assigned to be stopped.

Fig. 3. Typical backward runaway and stopped particle trajectories.

Runaway probability defined by unstopped/total number of particles at time t =10td on 丄 

space. It is coincident with [1,2] obtained by adjoint method. The contour is plotted in Fig. 4. In 
addition, the contour of averaged perpendicular velocity when partial passing through runaway 
surface defined to be Vh = 3. Still it is coincident with previous work. It is shown in Fig. 5.
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Fig. 4 Contour of runaway probability

Fig. 5 Contour of averaged perpendicular velocity when partial passing through runaway surface

Summary

There is a connection between partial differential equation and stochastic differential equation. 
Collision effects can be described by a stochastic differential equation. Energy-preserving algorithm 
is applied to the stochastic differential equation.

In the following works, we are going to investigate the runaway electrons in Tokamak geometry. 
And figure out the characteristics of backward runaway electrons in order to find out the way to 
reduce the backward runaway electrons in real tokamak.
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