МЕТОД ПОВЫШЕНИЯ РАДИАЦИОННОЙ СТОЙКОСТИ СТРУКТУР КРЕМНИЙ-НА-ИЗОЛЯТОРЕ

И.Е. Тысченко Институт физики полупроводников им. А.В. Ржанова, Новосибирск, Россия

Основным ограничением области практического применения структур кремний-на-изоляторе (КНИ) является накопление "аномально положительных зарядов" в диэлектрике. Накопление таких зарядов часто приводит к деградации изолирующего слоя SiO_2 , а также влияет на параметры приборов и схем, сформированных в верхнем слое КНИ, путем ограничения их стабильности во времени и снижения радиационной стойкости.

В работе рассмотрен метод повышения радиационной стойкости КНИ структур путем модифицирования захороненного диэлектрика ионами F^+ , N^+ , Si^+ или Ge^+ . Метод основан на особенностях физико-химических свойств имплантированных атомов в матрице SiO_2 . Исследованы свойства КНИ структур с ионно-модифицированным захороненным диэлектриком в зависимости от дозы и энергии ионов. Установлено, что имплантация ионов Si^+ и Ge^+ дозами выше 10^{16} см $^{-2}$ сопровождается снижением фиксированного заряда в окисле и практически не влияет на величину плотности поверхностных состояний на границе сращивания. Ионизирующее облучение таких структур вплоть до доз 10^6 рад не приводит к заметному сдвигу сток-затворных вольтамперных характеристик транзисторных структур.

Имплантация захороненного слоя SiO_2 ионами F^+ или N^+ приводит к генерации ловушек отрицательных зарядов вблизи границы сращивания КНИ структуры. В случае ионов F^+ ключевым параметром, ответственным за плотность отрицательного встроенного заряда является доза ионов фтора. Эффект энергии ионов оказывается существенным в случае имплантации ионов N^+ , в то время как в случае F^+ энергия ионов играла менее заметную роль. Полученные данные обсуждаются в рамках особенностей взаимодействия имплантированных атомов в матрице SiO_2 .