Study of structural and thermal properties of Sm₂ O₃ doped Calcium Boroaluminate

<u>Diogo Ramon do Nascimento Brito</u>¹, Maria Nayane de Queiroz¹, Antônia Millena de Oliveira Lima¹, Jheimison Ferreira Gomes¹, Marcio José Barboza¹, Alysson Steimacher¹, Franciana Pedrochi¹

¹Universidade Federal do Maranhão

e-mail: diogoramon.b@gmail.com

In the last decades, rare-earth (RE) ions doped solid-state materials have been a subject of considerable interest due to their applicability as solid-state laser, amplifiers, infrared-to-visible, phosphors, and field emission displays. Calcium boroaluminate glasses are the promising hosts for many optical applications because they are materials with a good combination of thermal, mechanical and optical properties that could be exploited in. The samarium ion (Sm³⁺) presents wide emission in the visible range, allowing its application in tunable lasers in the visible and with light emitting diodes. Its lowest emitting level ${}^4G_{50}$ has relatively high quantum efficiency and shows different quenching mechanism. Samples of calcium boroaluminate glass (CaBAl) with composition of (25-x)CaO-50B₂O₃-15Al₂ O₃-10CaF₂- xSm₂O₃ with samarium concentration varying from 0,50 a 7wt% were prepared by the conventional melting-quenching technique in this work. For the samples characterization, measurements of density, Raman spectra, FTIR, X-ray diffraction, thermal analysis (DTA) and specific heat (c_p) were performed. The results of this study are discussed in terms of the structural change in the network of CaBAl glasses with the addition of Sm₂O₃.

Acknowledgments: We are thankful to the Brazilian agencies CNPq, FINEP, Fapema and CAPES for financial support of this study.

REFERENCES:

SELVARAJU, K.; MARIMUTHU, K. Structural and spectroscopic studies on concentration dependent Sm3+ doped boro-tellurite glasses. Journal Of Alloys And Compounds, 2013 Mar 15, Vol.553, pp.273-281

WAN, X.; ZHONG, Q.; TIE, S. L.; SHEN, J. Y. Synthesis and luminescence properties of Tb3+ activated CaO-AL2O3-B2O3 glass. Optoelectronics and advanced materials – rapid communications, China, v.5, p.538-544, 31mai.2001.