

Recent Advances of the Very High Temperature Reactor System

Michael A. Fütterer (EU)

on behalf of the GIF VHTR System Steering Committee michael.fuetterer@ec.europa.eu

GIF-IAEA Interface Meeting

Vienna, 20-21 February 2017

GENT International

Outline

- 1. System overview
- 2. Status of Cooperation, Projects and Highlights
 - Materials
 - Fuel and Fuel Cycle
 - Hydrogen Production
 - Computational Methods, Validation & Benchmarks
- 3. Interaction with other GIF groups
- 4. Future collaborative projects
- 5. Related International Activities
- 6. Wrap-up

1. System Overview

- 7 Signatories: CH, EU, FR, JP, KR, US, CN
 + CDN in H₂ Production project
 - + Australia in Materials project
- Validity of SA: 30 November 2016; signature process for extension underway (delayed due to late FA extension)
- Most recent SSC Meeting: 11-12 November 2016 in Las Vegas

Active projects:

- 1. Materials
- 2. Fuel and Fuel Cycle
- 3. Hydrogen Production
- 4. Computational Methods, Validation & Benchmarking (provisional)

2.1 Materials

Objectives:

- Development and qualification of materials
 - Irradiation-induced and/or environmental and/or time-dependent material failure
 - ≤ 950°C: existing materials
 - ≤ 1 000°C (incl. safe operation under off-normal conditions and involving corrosive process fluids): new materials with development and qualification needs
- Design codes and standards
- Manufacturing methodologies
- Improved multi-scale modelling to support inelastic FEM analyses
- High-temperature heat exchangers and steam generators

3 Material Categories and corresponding WG:

- 1. graphite for core structures, fuel matrix, etc.;
- 2. very/medium-high-temperature metals;
- 3. ceramics and composites.

https://gen4www.ornl.gov

Materials handbook: developed and used to store and manage VHTR data, facilitate international R&D co-ordination and support modelling to predict damage and lifetime.

2.1 Materials

- Validity:
 - new PA -2018 (including CN and AUS)
- Signatories: CH, EU, FR, JA, KR, US
 - CDN, RSA, + CN

 + Australia: high T materials, welding, irradiations, corrosion new PA will include Australian contribution;

- Structure: 3 WG on Graphite, Metals, Ceramics
- **Output:** extremely productive, material test data, design codes and standards
- Crosscutting workshops: (with PMBs from other systems)
 - on metals: organized by EU at CV Rez (April 2016)
 - arrangement for informal cross-system information exchange desired
 - session on next GIF Symposium requested

International

2.1 Materials

- Focus on near- and medium-term project needs: graphite and high-T alloys
- Graphite characterization and testing before and after irradiation
- Oxidation protection (SiC, boron, and B₄C coatings): JA, KR, US

Cross section of the specimen manufactured by Standard method

Cross section of the specimen manufactured by Improved method

- Development of codes and standards for nuclear graphite
- Development and submission of ASME Code Case for Alloy 617 (< 950°C, < 100,000 h)
- Irradiation, irradiation creep, creep crack growth of 9Cr-1Mo (and ODS steels) including in weldments for RPV
- Creep in 2.25Cr-1Mo steel for steam generators

International Forum

2.2 Fuel and Fuel Cycle

Objectives:

- Test (and understand!) performance of UO₂/UCO TRISO coated particles with SiC/PyC coating and advanced coatings for enhanced burnup, minimum fission product release and maximum safety (resistance to core heat-up accidents >1600°C).
 - Fuel characterization
 - Chemical/ thermo-mechanical properties in normal and accidental conditions
 - Irradiation testing
 - Post-irradiation examination
 - Safety testing
 - Fission product release evaluation
- Spent-fuel treatment and disposal
- Used-graphite management
- Deep-burn of plutonium and minor actinides (MA) in support of a closed cycle

2.2 Fuel and Fuel Cycle

- **Validity:** Phase 1 PA: 2006 2011, Phase 2 PA: 2012 2017 Phase 3 PA under preparation
- Signatories: US, KR, EU, JA
 CDN, CH, FR (observer), + CN (Jan. 2014)
- Structure: Phase 2 Workplan 2012-17:
 - 1. Irradiation and PIE
 - 2. Fuel Attributes and Material Properties
 - 3. Safety testing
 - 4. Enhanced and Advanced Fuel Fabrication
 - 5. Waste management

Cross section of an AGR-2 UCO fuel compact irradiated (11.0% FIMA, time-peak T 1305°C)

Productive collaboration:

- Several workshops on SiC coating properties
- Irradiation testing, now with emphasis on PIE and safety testing
- Burn-leach round robin (sharing particles to validate key QC measurements)
- Workshops on design of heating furnaces, fuel deconsolidation and IMGA
- Code validation of irradiation tests and accident heating tests

2.2 Fuel and Fuel Cycle

- Several fuel irradiation tests completed, PIE and safety testing ongoing (US, EU+CN, KR)
- **Data analysis from irradiation and PIE**: fission product balance, safety testing, destructive analysis (deconsolidation-leach-burn-leach, gamma counting of individual particles, finding and analyzing particles with failed SiC, non-destructive particle x-ray analysis, particle microanalysis)
- Property measurements of irradiated coatings (EU, FR, JA, KR)
- Sample preparation for Leach-Burn-Leach round robin (US, KR, CN)

X-rays of simulated coating defects

Objectives:

Was original driver for VHTR development. After initial work by several signatories, SI and HTSE identified as most promising.

 Feasibility, optimization, efficiency and economics at small and large scale

International

- Performance and optimization in test loops, from lab scale through pilot and demo scale
- Component development (e.g. advanced process heat exchangers)
- Coupling technology with the nuclear reactor incl. risk analysis of potential interactions between nuclear and non-nuclear systems
- Technical and economic feasibility in dedicated or cogen mode
- Reduction of process temperature to gain compatibility with other GIF concepts

- Validity: current PA 2018
- Signatories: CDN, EU, FR, US, KR, JA + CN
- Processes:
 - Sulfur/Iodine cycle: KR, JA, CN

- High-Temperature Steam Electrolysis: FR, US, EU, CN, CDN
- > Hybrid copper-chloride cycle: CDN
- ➤ Hybrid sulfur cycle: ?
- Output:
 - Use of HTTR as heat source will enhance credibility of nuclear H₂ production;
 - Good: Contributions mainly from non-nuclear projects
 - Project successfully re-invigorated, more collaboration instead of work in parallel

- Several facilities combining 3 elementary processes to a thermo-chemical cycle process were built and operated (JA, CN)
- Continuous, stable operation at 20-60 l/h for almost 4 days
- Progress in materials, components, optimization of elementary processes, process control, safety, system integration, cost evaluation etc.

Hydrogen production test facility at JAEA Oarai

2.4 Computational Methods, Validation & Benchmarks (provisional)

Objectives:

- Tools to assess reactor performance in normal, upset and accident conditions.
 - Construction of a phenomena identification and ranking table
 - Computational fluid dynamics
 - Reactor core physics and nuclear data
 - Chemistry and transport
 - Reactor and plant dynamics
- Code validation
 - benchmark tests
 - code-to-code comparison
 - basic phenomena to integrated experiments
 - supported by HTR-10 and HTR-PM tests or by past reactor data (e.g. AVR, THTR and Fort Saint-Vrain)

➔ facilitate the elimination of unnecessary design conservatisms and improve construction cost estimates

2.4 Computational Methods, Validation & Benchmarking (provisional)

- Validity: PA to be signed after FA signed by all signatories (spring 2017) detailed task contribution sheets were prepared
- 2 constructive PMB meetings in 2016
- Signatories: CN, EU, JA, KR, US
- Structure: 5 Work Packages
 - 1. Phenomena identification and ranking table (PIRT) methodology (lead EU)
 - 2. Computational fluid dynamics (CFD) (lead CN)
 - 3. Reactor core physics and nuclear data (lead US)
 - 4. Chemistry and transport (lead CN)
 - 5. Reactor and plant dynamics (lead CN)

Output:

- HTR-10 in-core temperature measurement ongoing
- CN considers input from one or several of 16 HTR-PM engineering test facilities (useful for V&V of codes and methods)
- KR works on experimental validation of hybrid air/water RCCS (safety relevant)
- US has constructed test facilities (HTTF, NSTF, MIR...) to validate codes
- Productive upfront collaboration:
 - Good: several signatories already active and will contribute results as BPI

3. Interaction with other GIF groups

• GIF RSWG:

White Paper and Self Assessment under preparation in iteration with RSWG;

- **GIF PRPP WG:** interaction dormant; no clear benefits for PMBs;
- **GIF EMWG:** interaction to be reinforced, in particular to reduce cost uncertainties and to identify avenues for cost reduction R&D (e.g. on graphite cost)
- **GIF SIAP:** first contact established, focus on industrial aspects of demonstration and deployment;
- GIF Sustainability Task Force: Extension of task force to be discussed at next EG; GIF has bias towards fuel resource sustainability;
- GIF Education and Training Task Force:
 - VHTR SSC participates in LinkedIn group:

- Prepared a webinar (25 January 2017) https://www.gen-4.org/gif/jcms/c_87678/webinar-series-5-very-high-temperaturereactors-dr-carl-sink

4. Future collaborative R&D topics

- Targeted towards demonstration and long-term performance.
- Some topics suitable for collaboration within GIF, others more for IAEA or OECD/NEA or bilateral collaboration frameworks.
- Headlines:
 - 1. Materials (advanced), Components and Supply Chain
 - 2. Design, System Integration and Cost Reduction
 - 3. Safety Demonstration and Licensing
 - 4. Fuel, (advanced) Fuel Cycle, and Waste Minimization
 - 5. Coupling to Cogeneration Applications and Hybrid Energy Systems
 - 6. Advanced Energy Use and Storage Methods

➔ Ample opportunities for further fruitful cooperation on HTGR, VHTR and process heat applications

5. Related international activities GEMINI/PRIME

- Joint effort of NC2I & NGNP IA for demonstration
- MoU signed June 2014
- Workshops in Paris, Washington, Piketon, Brussels, Las Vegas
- Participation of Korea and Japan currently being explored
- Related EU project approved on 16 February 2017 (GEMINI+)
- Modular design to meet common needs:
 - similar components
 - 300 or 600 MWth (1 or 2 loops)

UK Department for Business, Energy & Industrial Strategy

SMR Techno-Economical Assessment and \pounds 250 million SMR call (participation of GEMINI); LWR and HTGR with high TRL are being considered for medium-term deployment;

HTR Conferences

HTR 2016: 6-10 November 2016, Las Vegas (200 technical papers plus invited talks) HTR 2018: October 2018 in Warsaw, Poland

6. Wrap-up

- GIF VHTR projects share expertise and infrastructure and progress well
- FFC and MAT projects are in a productive harvesting phase
- HP and CMVB projects were successfully revitalized
- Excellent collaborative achievements confirm usefulness of GIF
- Several countries active in VHTR (several companies, new projects)
 - Safety, high efficiency, process heat applications (steam, H₂)
 - GEMINI (EU+US), BATAN (Indonesia), StarCore Nuclear (Canada), X-Energy (US), HTMR (UK), STL (RSA)
 - HTTR (Japan) waiting for regulator OK
 - HTR-10 (China) is running
 - HTR-PM (China) start-up at end-2017
- Cooperation with IAEA and OECD/NEA

