
Conference Paper

Atomic Energy of
Canada Limited

Chalk River, Ontario
Canada K0J 1J0

Énergie Atomique du
Canada Limitée

Chalk River (Ontario)
Canada K0J 1J0

Altiparmakov Dimitar - Reactor
Physicist

Prepared by
Rédigé par

Bromley Blair - Reactor Physicist

Reviewed by
Vérifié par

Trottier Alexandre - Reactor
Physics Analyst

Radford Darren D. - Manager,
Computational Reactor Physics

Approved by
Approuvé par

SPEEDING-UP COLLISION
PROBABILITY
CALCULATIONS

COMPANY WIDE

CW-119190-CONF-015

Revision  0

2012/05/01
UNRESTRICTED

2012/05/01
ILLIMITÉ



24
th
 Nuclear Simulation Symposium  CW-119190-CONF-015 

2012 October 14-16, Ottawa, Ontario, Canada  AECL - UNRESTRICTED 

 1 

 

SPEEDING-UP COLLISION PROBABILITY CALCULATIONS 

 

Dimitar Altiparmakov 

AECL – Chalk River Laboratories 

Chalk River, Ontario, Canada, K0J 1J0 

altipard@aecl.ca 

Abstract 

The requirements for extensive computing time and large computer memory have 

been recognized as major deficiencies of the collision probability method.  This 

paper presents two methods for speeding up the calculations in the above two 

areas.  One method is concerned with the calculation of collision probabilities, 

while the other allows a faster solution of resulting systems of linear algebraic 

equations.  In two-dimensional geometry, the collision probabilities are expressed 

as linear combinations of Bickley functions, 𝐾𝑖3(𝑥), the evaluation of which is 

the main time consumer for small and medium size problems.  The new method 

presented here applies a numerical integration of the polar angle instead of 

Bickley function calculation.  As a result, the algorithm is more robust and twice 

as fast.  The solution of the collision probability equation is usually obtained by 

direct methods of matrix decomposition.  The computing time is proportional to 

the third degree of the number of unknowns and increases rapidly with the 

increase of the problem size.  To speed-up the calculation, the within-group 

matrix is subdivided into a number of blocks.  The solution is obtained iteratively 

by block-matrix iteration using the traditional Gauss-Seidel method.  Test results 

show a decrease in computing time by more than one order of magnitude. 

1. INTRODUCTION 

Owing to both geometric flexibility and efficiency in treating strong absorbers, integral transport 

methods have been used since the early era of reactor physics code development.  The collision 

probability method was the main engine for solution of the neutron transport equation in a series 

of computer codes developed in 1960’s.  The spectrum code THERMOS [1] is credited with 

conceiving the use of the collision probability method as an efficient transport solver, while the 

code WIMS [2] is the first code that encompassed the full functionality of reactor lattice 

calculation by collision probability method.  A few collocation methods based on Gaussian 

quadrature formulae have been also developed [3], [4] for one-dimensional geometry. However, 

the collision probability method prevailed because of the simplicity of mathematical apparatus 

that allows an easy extension to two-dimensional geometry.  
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The size and the density of collision probability matrices were recognized as major deficiencies 

requiring extensive computing time and large computer memory.  Over time, the progress in 

computer capabilities diminished the importance of these deficiencies, so that in 1990’s a new 

generation of codes emerged, which extended the use of collision probability method from the 

lattice cell level to the fuel assembly level.  Typical representatives are: DRAGON [5] with 

selected three-dimensional capabilities, GTRAN2 [6] with anisotropic scattering and parallel 

processing, and HELIOS [7] that combines the current coupling and collision probability 

techniques.  With today’s computer power it is to be expected that the area of application of 

integral transport methods can be significantly extended.  

WIMS-AECL is a two-dimensional multi-group collision probability code routinely used for 

lattice calculations of CANDU


-type reactors
a
.  The code evolved from the UK code WIMS, a 

copy of which was distributed to Chalk River Laboratories, AECL, in 1971.  Over the years the 

code has undergone extensive modifications, and today, it is recognized as an independent 

version of the original UK code. The code capabilities were significantly extended with the 

development of the version WIMS-AECL 3.1 [8]. 

In order to speed up calculations, new methods for both collision probability integration and 

solution of large systems of equations have been developed and presented in this paper.  The new 

methods were implemented in a developmental version of WIMS-AECL, which, for the sake of 

simplicity will be further referred to as “WIMS”.  Section 2 reviews the basic mathematical 

apparatus of the collision probability method and describes the new algorithm for numerical 

integration.  Section 3 presents the new method for solution of large systems of linear algebraic 

equations generated by the collision probability method.  Section 4 describes several test 

problems and presents the numerical results. 

2. COLLISION PROBABILITY METHOD 

Assuming isotropic neutron scattering, the within-group integral transport equation can be cast in 

either of the following two equivalent forms: 

𝜑 𝒓 =
1

4𝜋
 𝑑3𝑟′

exp −𝜏 𝒓, 𝒓′  

 𝒓 − 𝒓′  2

 

𝑉

  𝛴s (𝒓′) 𝜑(𝒓′) +

 
 
 
𝑆(𝒓′)  (1) 

 

𝜑(𝒓) =
1

4𝜋
 𝑑Ω

 

4𝜋

 𝑑𝑠
∞

0

exp −𝜏 𝒓′, 𝒓    𝛴s (𝒓′) 𝜑(𝒓′) +

 
 
 
𝑆(𝒓′)  ,   𝒓′ = 𝒓 − 𝑠𝛀 (2) 

in which, the boundary term is omitted for the sake of simplicity, assuming that the spatial 

domain 𝑉 is either infinite or bounded by a boundary of convex shape surrounded by vacuum.  

The group index is also omitted for the sake of clarity, while the quantities have the following 

meanings: 

𝒓, 𝒓′    – Position vectors specified by spatial coordinates (𝑥, 𝑦, 𝑧) and (𝑥′, 𝑦′, 𝑧′) 

𝛀 =
𝒓−𝒓′

 𝒓−𝒓′  
   – Neutron path direction specified by azimuth and polar angles (𝜙, 𝜃) 

𝑠 = 𝒓′ − 𝒓   – Distance along the neutron path  

                                                
a CANDU is a registered trademark of Atomic Energy of Canada Limited (AECL). 
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𝑑3𝑟′ = 𝑠2𝑑𝑠 𝑑Ω    – Elementary volume 

𝜑(𝒓)    – Scalar neutron flux 

𝑆(𝒓)    – Neutron source (fission and neutron scattering from other groups) 

𝛴s (𝒓)    – Macroscopic scattering cross section 

𝛴t(𝒓)     – Total macroscopic cross section 

𝜏(𝒓, 𝒓′) =  𝛴t
 𝒓−𝒓′ 

0
(𝒓 − 𝑠

𝒓−𝒓′

 𝒓−𝒓′ 
)𝑑𝑠  – Optical distance between points 𝒓 and 𝒓′ 

Eqs. (1) and (2) represent a Fredholm-type integral equation of the second kind [9].  The kernel 

is continuous, square-integrable and symmetric.  It is worth mentioning that the denominator in 

the kernel of Eq. (1) might be misleading.  In the past, a number of authors considered the 

transport equation as a singular integral equation.  However, Eq. (2) shows that the kernel is 

continuous and cannot have infinite values. 

According to the kernel properties, the integral transport equation has a non-trivial solution for 

any square-integrable function 𝑆 that represents the neutron source. The solution belongs to the 

class of square-integrable functions.  In contrast, the solution of the integro-differential transport 

equation belongs to the class of continuous and differentiable functions.  Thus, the main benefit 

of using the integral equation is that the approximate solution is sought in a much less restrictive 

class of functions than the class of functions to which the solution of the original problem 

belongs. Another benefit is that the number of degrees of freedom of the solution (independent 

variables) is reduced by two degrees, i.e. the angular variables (𝜙, 𝜃) are eliminated by angular 

integration over the unit sphere.  In simple terms, the approximate solution of the integral 

equation is equivalent to 𝑃𝑛  spherical harmonics or 𝑆𝑛  discrete ordinates solutions when 𝑛 tends 

to infinity. 

2.1 Collision Probability Equations 

The class of square-integrable functions allows a large degree of freedom in the choice of trial 

functions as approximate solution of the transport equation.  The simplest form is the step 

function.  Suppose the spatial domain 𝑉 is subdivided into 𝑛 subdomains 𝑉𝑖 .  Regardless the 

geometric shape, a step function 𝜔𝑖(𝒓) can be associated to each subdomain, i.e. 

𝜔𝑖(𝒓) =  
1, 𝒓 ∈  𝑉𝑖

0, 𝒓 ∉  𝑉𝑖

  (3) 

The collision probability method was originally formulated by means of physics arguments. 

From the mathematical point of view, however, it is an application of the Galerkin method of 

moments.  The functions representing the neutron flux 𝜑(𝒓) and neutron source 𝑆(𝒓)  can be 

expanded over the basis of step functions 𝜔𝑖(𝒓) as follows: 

𝜑(𝒓) =  𝜑 𝑖

𝑛

𝑖=1

𝜔𝑖(𝒓) , 𝑆(𝒓) =  𝑆 
𝑖

𝑛

𝑖=1

𝜔𝑖(𝒓) (4) 
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where the expansion coefficients 𝜑 𝑖  and 𝑆 
𝑖  represent region-averaged value of neutron flux and 

neutron source, respectively, i.e. 

𝜑 𝑖 =
1

𝑉𝑖

 𝜑(𝒓)𝑑3𝑟 , 𝑆 
𝑖 =

1

𝑉𝑖

 𝑆(𝒓)𝑑3𝑟 
 

𝑉𝑖

 

𝑉𝑖

 (5) 

Multiplying Eq. (1) or (2) by each basis function 𝜔𝑖(𝒓) and integrating over the spatial domain 

𝑉, one gets a system of linear algebraic equations that determines the approximate solution 𝜑 𝑖 .  

Multiplying each equation by the volume and the total cross section of the corresponding 

subdomain, the system of equations can be expressed in the classical form of collision 

probability equations: 

𝛴𝑡 ,𝑖𝑉𝑖𝜑 𝑖 =  𝑉𝑗 𝑃𝑗→𝑖 𝛴𝑠,𝑗 𝜑 𝑗 + 𝑆 
𝑗 

𝑛

𝑗 =1

 , 𝑖 = 1,2, …𝑛 (6) 

2.2 Collision Probability Expression 

A matrix coefficient 𝑃𝑗→𝑖  represents the probability that a neutron born in region j will suffer its 

next collision in region i.  Its explicit form is: 

𝑃𝑗→𝑖 =
𝛴𝑡 ,𝑖

4𝜋𝑉𝑗

 𝑑3𝑟
 

𝑉𝑖

 𝑑3𝑟
 

𝑉𝑗

′
exp −𝜏(𝒓, 𝒓′) 

 𝒓 − 𝒓′ 2
                           

=
𝛴𝑡 ,𝑖

4𝜋𝑉𝑗

 𝑑3𝑟
 

𝑉𝑖

 𝑑2
 

4𝜋

Ω  𝑑𝑠
𝑠j

 

𝑠j
 −∆sj

exp −𝜏(𝒓, 𝒓′) 

𝒓 ∈ 𝑉𝑖 ,   𝒓′ ∈ 𝑉𝑗  (7) 

where 𝑠𝑗  denotes the distance from the point 𝒓 in region 𝑉𝑖  to the exit point of direction 𝛀 from 

the region 𝑉𝑗 , while ∆𝑠𝑗  is the track length size of direction 𝛀 through the region 𝑉𝑗 . 

Owing to axial invariability (two-dimensional geometry), the integral over the volume 𝑉𝑖  reduces 

to a double integral over the horizontal cross section of 𝑉𝑖 .  Also, the geometric distance 𝒔 = 𝒓 −
𝒓′ and the optical distance 𝜏(𝒓, 𝒓′) can be expressed by their projections x and t onto the 

horizontal plane: 

𝑠 =
𝑥 − 𝑥′

sin 𝜃
 , 𝜏 =

𝑡(𝒓, 𝒓′)

sin 𝜃
 (8) 

Assuming that that the x-y Cartesian coordinate system rotates with the azimuth angle 𝜙 so that 

the x-axis is parallel to the projection of 𝛀 onto the horizontal plane, the collision probability 

takes the form of the following five-fold integral: 

𝑃𝑗→𝑖 =
𝛴𝑡 ,𝑖

4𝜋𝑉𝑗

 𝑑𝜙

2𝜋

0

 𝑑𝑦

𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

 𝑑𝑥

𝑥𝑖

𝑥𝑖−Δ𝑥𝑖

 𝑑𝑥′

𝑥𝑗
′

𝑥𝑗
′−Δ𝑥𝑗

′

 𝑑𝜃

𝜋

0

𝑒−𝑡(𝑥 ,𝑥′)/sin 𝜃  (9) 
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The integration along direction 𝛀 is carried out over parallel trajectories that intersect both 

regions 𝑉𝑖  and 𝑉𝑗 .  The limits of y-integration 𝑦𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑌𝑖,1 , 𝑌𝑗 ,1) and 𝑦𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑌𝑖,2 , 𝑌𝑗 ,2) 

are illustrated in Figure 1.  Because of complicated geometric shapes that usually occur, 

integration with respect to azimuth angle 𝜙 and Cartesian coordinate y cannot be carried out 

analytically.  Instead, it is evaluated numerically, i.e 

 𝑑𝜙

2𝜋

0

 𝑑𝑦

𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

 𝐹(𝜙, 𝑦) ≈  𝑤𝑘

𝐾

𝑘=1

 𝑤ℓ

𝐿

ℓ=1

𝐹(𝜙𝑘 , 𝑦ℓ) (10) 

The result of integration over the polar angle 𝜃 is expressed as the Bickley function of the first 

order 𝐾𝑖1(𝑡) [10]. 

 𝑑𝜃

𝜋/2

0

𝑒−𝑡(𝑥 ,𝑥′)/sin 𝜃 = 𝐾𝑖1(𝑡(𝑥, 𝑥′)) (11) 

Thus, by analytical integration of Cartesian coordinates 𝑥 and 𝑥′, the collision probability 

expression takes the following form: 

𝑃𝑗→𝑖 =
1

2𝜋𝛴𝑡 ,𝑗 𝑉𝑗
 𝑤𝑘

𝐾

𝑘=1

 𝑤ℓ

𝐿

ℓ=1

𝐹𝑗 ,𝑖(𝜙𝑘 , 𝑦ℓ) (12) 

where 𝑤𝑘  and 𝑤ℓ represent integration weights of the quadrature formulae applied, while the 

function 𝐹𝑗 ,𝑖  represents a linear combination of Bickley functions of third order: 

𝐹𝑗 ,𝑖 =  
𝛴𝑡 ,𝑖𝑉𝑖 −  𝐾𝑖3(0) − 𝐾𝑖3(𝑡𝑖)  ,                                                                𝑖 = 𝑗

𝐾𝑖3(𝑡𝑖𝑗 ) − 𝐾𝑖3(𝑡𝑖𝑗 + 𝑡𝑗 ) − 𝐾𝑖3(𝑡𝑖𝑗 + 𝑡𝑖) + 𝐾𝑖3(𝑡𝑖𝑗 + 𝑡𝑖 + 𝑡𝑗 ) ,   𝑖 ≠ 𝑗
  (13) 

For a given neutron trajectory, the quantities 𝑡𝑖 = 𝛴𝑡 ,𝑖∆𝑥𝑖  and 𝑡𝑗 = 𝛴𝑡 ,𝑗 ∆𝑥𝑗  denote the optical 

thickness of regions i and j, while 𝑡𝑖𝑗  is the minimum optical distance between these two regions 

(Figure 2). 

𝑡𝑖𝑗 =  𝑡𝑛  

𝑗−1

𝑛=𝑖+1

,   𝑖 < 𝑗   𝑜𝑟   𝑡𝑖𝑗 =  𝑡𝑛  

𝑖−1

𝑛=𝑗 +1

,   𝑖 > 𝑗 (14) 

Thus, the contribution to collision probability of a given neutron path trajectory is expressed as 

two-term (𝑖 = 𝑗) or four-term (𝑖 ≠ 𝑗) linear combinations of Bickley functions.  Its evaluation is 

usually the most time consuming part of the collision probability integration algorithm. 
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Figure 1  Limits of y-integration in collision 

probability calculation. 

 

Figure 2  Geometric illustration of analytical 

integration along neutron trajectory.

 

2.3 Evaluation of Bickley Functions 

The Bickley function 𝐾𝑖𝑛 (𝑡) is a special function defined [10] as n-times repeated integral of the 

modified Bessel function of the second kind, 𝐾0(𝑥), i.e. 

𝐾𝑖𝑛 (𝑥) =  𝐾𝑖𝑛−1(𝑡)𝑑𝑡,     𝑛 = 1,2,3, …      𝑎𝑛𝑑    𝐾𝑖0(𝑥)
∞

𝑥

= 𝐾0(𝑥) (15) 

A general approach to numerical evaluation of special functions is to subdivide the argument 

range in the following three parts: 

 Range of small arguments, in which a convergent series is used.  The upper bound of the 

range is chosen according to the radius of convergence. 

 Range of regular (medium size) arguments, in which integral formulae are applied, often 

coupled with recurrence relations in order to get functions of various order n. 

 Range of large arguments, in which calculations are carried out using an asymptotic 

expansion.  This range, however, is out of interest here, because, for such arguments the 

contribution to collision probabilities is negligible.  

In order to speed up collision probability codes, the calculation of Bickley functions is usually 

carried out by polynomial or rational approximations [11].  The lattice code WIMS-AECL uses 

look-up tables of piecewise polynomials.  The code version 2-5d applies a table of quadratic 

polynomials specified over a set of 2,500 equidistant intervals that cover the range from x=0 to 

x=15, while the code version 3.1 uses linear polynomials over a set of 15,000 equal width 

intervals of length size 0.001. 

2.4 Numerical Integration Instead of Bickley Functions Calculation 

To explain the new method of collision probability calculation, it is useful to present the 

accuracy of the Gauss quadrature formula [12] applied to Bickley function calculation.  Figure 3 

presents the absolute value of the relative error in 𝐾𝑖3(𝑥) evaluation over the range 𝑥 ∈ [0,15].  
It is calculated varying the number of quadrature nodes from 3 to 8.  Due to logarithmic scale, 

sharp minimum values denote argument values at which the sign of the relative error changes. 
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The Gauss quadrature formula can be applied directly into Eq. (9) instead of the analytical 

integration of the polar angle.  In this case, the collision probability can be expressed as follows: 

𝑃𝑗→𝑖 =
1

2𝜋𝛴𝑡 ,𝑗 𝑉𝑗
 𝑤𝑘

𝐾

𝑘=1

 𝑤ℓ

𝐿

ℓ=1

 𝑤𝑚

𝑀

𝑚

sin2𝜃𝑚  𝐺𝑗 ,𝑖(𝜙𝑘 , 𝑦ℓ, 𝜃𝑚 ) (16) 

where 𝜃𝑚  and 𝑤𝑚  are abscisas and ordinates of the Gauss quadrature formula, and the function 

𝐺𝑗 ,𝑖  is obtained by analytical integration along the trajectory specified by the polar angle 𝜃𝑚  

𝐺𝑗 ,𝑖 =  
𝛴𝑡 ,𝑖∆𝑥𝑖 −  1 − exp(−𝜏𝑖)  ,                                             𝑖 = 𝑗

 1 − exp(−𝜏𝑖) ∙ exp(−𝜏𝑖𝑗 ) ∙  1 − exp(−𝜏𝑗 ) , 𝑖 ≠ 𝑗
  (17) 

One would expect that using numerical integration instead of analytical one, the computing time 

will increase.  As shown in Section 4, however, the effect is opposite for low order quadrature 

formulae.  This is mainly due to the simplicity of Eq. (17).  Owing to the properties of the 

exponential function, the attenuation factor (the trajectory contribution to the transmission 

probability) between regions i and j can be expressed as a product of attenuation factors of 

individual regions, i.e. 

exp(−𝜏𝑖𝑗 ) =  exp(−𝜏𝑛 )

𝑗−1

𝑛=𝑖+1

 (18) 

Increasing the index j, the new attenuation factor is obtained by a single multiplication.  On the 

other hand, the analytical approach requires calculation of four Bickley functions.  Using linear 

look-up tables, the calculation of each function implies two arithmetic operations (one 

multiplication and one addition), plus three arithmetic operations to locate the subinterval in the 

look up table. 

 

Figure 3  Accuracy of Bickley function calculation using Gauss quadrature formula 
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For a large optical distance between regions i and j, the contribution to the collision probability 

becomes a very small quantity.  Thus, the calculation of Eq. (13) is usually truncated when the 

argument of the Bickley function reaches a cut-off value.  In WIMS, it is an input specified 

parameter limited to 15 neutron mean free paths – the maximum value for which the look-up 

table is calculated.  Instead of Bickley functions, the new method uses exponential functions that 

are calculated by intrinsic computer procedure.  Thus, the cut-off parameter in calculation of Eq. 

(17) is not limited.  In this case, it is more convenient to specify the truncation by the magnitude 

of the transmission probability, Eq. (18), instead of the optical distance.   

Another advantage of the numerical integration is reduced round-off error.  The exponential 

function is evaluated by intrinsic computer procedure, so that the contribution to the collision 

probability is calculated accurately and always positive.  This is not necessarily the case for the 

analytical approach.  The related expression in Eq. (13) represents a sum of two differences.  

Due to the limited accuracy of the look up tables, a loss of significant figures may occur for 

optically thin regions.  As a result, the round off error accumulates in the sum of the trajectory 

contributions and impairs the accuracy of collision probability values. 

3. BLOCK ITERATION OF COLLISION PROBABILITY EQUATIONS  

The collision probability method approximates the neutron transport equation by a set of linear 

algebraic equations.  The overall solution is obtained by a two-level iteration.  The outer iteration 

is carried out by the power iteration method to get the eigenvalue (neutron multiplication factor) 

and the related fission source.  The inner iteration is performed on the thermal groups to 

determine the thermal scattering source. 

3.1 Within-Group Solution 

Dividing each collision probability equation by 𝛴𝑡 ,𝑖𝑉𝑖 , the neutron flux can be expressed by the 

so-called modified collision probabilities 𝑃𝑗→𝑖
∗ , so that Eq. (6) takes the following form: 

𝜑 𝑖 =  𝑃𝑗→𝑖
∗  𝛴𝑠 ,𝑗 𝜑 𝑗 + 𝑆 

𝑗 

𝑛

𝑗 =1

 , 𝑖 = 1,2, …𝑛. (19) 

Denote by 𝝋 and 𝒔 the vectors of region averaged fluxes 𝜑 𝑗  and sources 𝑆 
𝑗 , respectively, 𝑷 is the 

matrix of modified collision probabilities, 𝜮𝑠  is a diagonal matrix of scattering cross sections, 

and 𝑰 is a unity matrix. The matrix of Eq. (19) is dense and the solution is obtained either by 

matrix decomposition or matrix inversion.  To do this, Eq. (19) is rearranged as follows: 

𝑨𝝋 = 𝒇, 𝑨 = 𝑰 − 𝜮𝑠𝑷, 𝒇 = 𝑷𝒔 (20) 

The matrix 𝑨 can be decomposed as a product of lower 𝑳 and upper 𝑼 triangular matrices, so 

that the solution is obtained by forward elimination and backward substitution as follow: 

𝑨 = 𝑳𝑼, 𝝃 = 𝑳𝒇, 𝝋 = 𝑼𝝃 (21) 

where 𝝃 is an auxiliary vector.  This procedure is usually used to calculate the within-group flux 

in fast energy groups.  In thermal groups, however, it is necessary to calculate the flux by direct 

matrix inversion, i.e. 

𝝋 = 𝑨−1𝒇, 𝑩 = 𝑳𝑰,       𝑨−𝟏 = 𝑼𝑩 (22) 
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The number of arithmetic operations of the solution procedures (21) and (22) is proportional to 

the third degree of the number of unknowns per energy group.  Evidently, the computing time 

increases rapidly with the increase of the number of unknowns. 

The total computing time of the collision probability method consists of three components: (1) 

calculation of collision probabilities, (2) matrix decomposition/inversion, and (3) thermal flux 

iteration.  For small and medium-size problems (below one thousand equations per group), the 

major consumer of computing time is the calculation of collision probabilities.  A new method 

was presented in Section 2 that, as shown in Section 4, speeds up the calculation by a factor of 2.  

Increasing the problems size above one thousand equations per group, the dominant time 

consumer is the matrix inversion.  The computing time is proportional to the third degree (𝑛3) of 

the number of unknowns, so that the method becomes inefficient for models that are represented 

by several thousand equations.  This section presents a new solution method for this type of 

problems, which speeds up the calculation of large cases by at least an order of magnitude. 

3.2 Block-Iteration Method 

The vectors of unknown flux 𝝋 and source values 𝒔 and, accordingly, the matrix 𝑷 of modified 

collision probabilities, can be subdivided into a number 𝑚 of blocks as follows: 

𝝋 =  

𝝋1

𝝋2

⋮
𝝋𝑚

 , 𝒔 =  

𝒔1

𝒔2

⋮
𝒔𝑚

 , 𝑷 =  

𝑷11 𝑷12

𝑷21 𝑷22

⋯ 𝑷1𝑚

⋯ 𝑷2𝑚

⋮ ⋮
𝑷𝑚1 𝑷𝑚2

⋱ ⋮
⋯ 𝑷𝑚𝑚

  (23) 

Suppose that each block has 𝑛𝑖  elements so that 𝑛 =  𝑛𝑖
𝑚
𝑖=1 .  Eq. (19) can be rewritten now in 

matrix form as follows: 

𝝋𝑖 =  𝑷𝑖𝑗  𝜮𝑠,𝑗 𝝋𝑗 + 𝒔𝑗  

𝑚

𝑗 =1

 , 𝑖 = 1,2, …𝑚. (24) 

One may apply block iteration in order to solve Eq. (24). Using the Gauss-Seidel method, the 

iteration scheme can be cast as follows where ℓ denotes the iteration index: 

𝝋𝑖
(ℓ+1)

=  𝑷𝑖𝑗  𝜮𝑠,𝑗 𝝋𝑖
(ℓ+1)

+ 𝒔𝑗 +

𝑖

𝑗=1

 𝑷𝑖𝑗  𝜮𝑠,𝑗𝝋𝑖
(ℓ)

+ 𝒔𝑗 

𝑚

𝑗=𝑖+1

 , 𝑖 = 1,2, …𝑚. (25) 

It can be rearranged as follows in order to express the unknown block 𝝋𝑖
(ℓ+1)

 

𝝋𝑖
(ℓ+1)

− 𝑷𝑖𝑖𝜮𝑠,𝑖𝝋𝑖
(ℓ+1)

=  𝑷𝑖𝑗  𝜮𝑠,𝑗 𝝋𝑖
(ℓ+1)

+ 𝒔𝑗 +

𝑖−1

𝑗 =1

 𝑷𝑖𝑗  𝜮𝑠,𝑗𝝋𝑖
(ℓ)

+ 𝒔𝑗 

𝑚

𝑗=𝑖+1

 (26) 

Inverting the matrix on the left hand side of Eq. (26), the iteration scheme takes the following 

form: 

𝝋𝑖
(ℓ+1)

=  𝑨𝑖𝑖
−1𝑷𝑖𝑗  𝜮𝑠,𝑗 𝝋𝑖

(ℓ+1)
+ 𝒔𝑗  +

𝑖−1

𝑗 =1

 𝑨𝑖𝑖
−1𝑷𝑖𝑗  𝜮𝑠,𝑗 𝝋𝑖

(ℓ)
+ 𝒔𝑗 

𝑚

𝑗 =𝑖+1

 (27) 
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where 

𝑨𝑖𝑖
−1 =  𝑰 − 𝑷𝑖𝑖𝜮𝑠,𝑖 

−1
 (28) 

Instead of inverting the full matrix 𝑨 of dimension 𝑛 × 𝑛, the above scheme requires inversion of 

𝑚 matrices 𝑨𝑖𝑖
  of much lower dimensionality.  Another advantage is the significant reduction in 

memory requirements.  Matrix blocks can be stored in a temporary file and retrieved in the 

memory one-by-one as necessary. 

4. NUMERICAL RESULTS 

4.1 Test Problems 

In order to study the properties of the new methods, the following three sets of problems are 

considered: 

A. Enhanced CANDU-6 (EC-6) lattice cell with fresh fuel. 

1. EC-6 lattice cell at normal operating condition (Figure 4). 

2. EC-6 lattice cell with destroyed bundle in a crept pressure tube (Figure 5). 

B. Defueled channel in a periodically repeating EC-6 lattice region. 

1. Periodically repeating lattice region of 2x2 cells (Figure 6). 

2. Periodically repeating lattice region of 3x3 cells. 

3. Periodically repeating lattice region of 4x4 cells. 

4. Periodically repeating lattice region of 5x5 cells. 

C. Core-reflector interface in EC-6 lattice. 

1. Model of 3+2 cells (3 fuel cells + 2 reflector cells) (Figure 7). 

2. Model of 4+2 cells. 

3. Model of 5+2 cells. 

4. Model of 6+2 cells. 

Figure 4 shows the geometric model of the EC-6 lattice cell along with the mesh subdivision that 

is used for collision probability calculations.  Because of the symmetry, the number of unknowns 

per group reduces to the number of meshes in one quadrant of the lattice cell, which is in this 

case equal to 142 unknowns per group. 
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Figure 4  Geometric model and mesh 

subdivision of EC-6 lattice cell. 

 

Figure 5  EC-lattice cell with destroyed fuel 

bundle in a sagged pressure tube..

 

Figure 5 presents the geometric model of the EC-6 lattice cell with destroyed fuel bundle in a 

sagged pressure tube, as used usually in safety analysis.  In this case, there is no symmetry in the 

model. Moreover, due to the asymmetry of the pressure tube and fuel pins, additional mesh 

refinement should be applied to the pressure tube interior.  As a result, the problem is represented 

by 825 unknowns per group. 

Figure 6 shows the geometric model of the defueled channel problem in 22 cells environment, 

while Figure 7 represents the geometric model of a core-reflector interface problem with three 

fueled cells and two reflector cells (3+2 cells).  In related models, only the number of regular 

lattice cells is greater; there is again one defueled cell or two reflector cells. 

4.2 Collision Probability Calculation 

As presented in Section 2, there are two free parameters in the new method for collision 

probability calculation.  They are: the number of quadrature nodes for polar angle integration and 

the truncation (cut-off) criterion in the calculation of the trajectory contribution to collision 

probability.  Calculations of test problems A.1 and A.2 were carried out varying these parameters 

as follows: the number of quadrature nodes varies from 2 to 8, while truncation parameter varies 

over the following set of values: 10
-4

, 10
-5

, 10
-6

, 10
-7

, and 10
-8

.  Reference calculations were 

performed using 32 quadrature nodes and truncation parameter of 10
-18

.  Table 1 and Table 2 

present the results of calculations obtained for both coolant states (cooled and voided) of the test 

problems A.1 and A.2, respectively.  For each parameter value (the number of nodes and the cut-

off parameter), the following results are given: the infinite neutron multiplication factor (k-inf), 

the absolute error k-inf expressed in pcm = 0.01 mk, the root mean square error (%) in neutron 

flux distribution, and the computing time for calculation of collision probabilities.  Calculations 

were carried out on a Hewlett Packard PC with Intel Core2, a 32-bit processor, at 3 GHz clock.  

The results show that for the cooled lattice state even the very coarse approximation (2 nodes and 

cut-off value of 10
-4

) produces rather low errors (20 pcm = 0.2 mk in k-infinity and less than 1% 
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in flux distribution). However, for the voided coolant state the flux error of the low order 

approximation rises to about 15%. Thus, 3 quadrature nodes and a cut-off value of 10
-6

 seem to 

be a reasonable choice for routine calculations. The error in neutron multiplication factor is 

within 2 pcm, the RMS error in flux distribution is below half a percent, while the computing 

time is decreased by more than a factor of 2 

 

Figure 6  Geometric model of defueled channel problem represented by 2x2 lattice cells. 

 

Figure 7  Geometric model of core-reflector interface problem represented by three fuel cells and 

two reflector cells 
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Table 1 

Results of calculation of EC-6 lattice cell 

Number 

of 

Nodes 

Cut 

Off 

Value 

Cooled Voided 

k-inf 
k-inf 

(pcm) 

RMS 

(%) 

CPU 

(s) 
k-inf 

k-inf 

(pcm) 

RMS 

(%) 

CPU 

(s) 

2 

1.E-4 1.11467 19 0.79   4.7 1.13585 33 3.8   4.7 

1.E-5 1.11465 17 0.32   5.3 1.13575 23 0.60   5.3 

1.E-6 1.11465 17 0.33   5.9 1.13574 22 0.35   5.9 

1.E-7 1.11465 17 0.33   6.5 1.13574 22 0.36   6.5 

1.E-8 1.11465 17 0.33   7.0 1.13573 21 0.36   7.1 

3 

1.E-4 1.11450 2 0.77   6.1 1.13559 7 3.9   6.1 

1.E-5 1.11448 0 0.061   7.0 1.13550 -2 0.55   7.1 

1.E-6 1.11447 1 0.043   7.9 1.13550 -2 0.076   7.9 

1.E-7 1.11448 0 0.043   8.7 1.13550 -2 0.050   8.8 

1.E-8 1.11448 0 0.043   9.7 1.13550 -2 0.05   9.6 

4 

1.E-4 1.11451 3 0.77   7.7 1.13562 10 3.9   7.5 

1.E-5 1.11449 1 0.046   8.8 1.13552 0 0.55   8.8 

1.E-6 1.11449 1 0.011   9.9 1.13552 1 0.059   9.9 

1.E-7 1.11449 1 0.010 10.9 1.13552 0 0.012 11.1 

1.E-8 1.11450 2 0.010 11.9 1.13551 -1 0.012 12.1 

5 

1.E-4 1.11451 3 0.76   9.0 1.13562 10 3.9   8.9 

1.E-5 1.11448 0 0.044 10.6 1.13552 0 0.55 10.5 

1.E-6 1.11448 0 0.005 11.9 1.13551 -1 0.058 12.0 

1.E-7 1.11449 1 0.004 13.2 1.13551 -1 0.006 13.4 

1.E-8 1.11449 1 0.004 14.4 1.13551 -1 0.003 14.6 

6 

1.E-4 1.11451 3 0.77 10.5 1.13562 10 3.89 10.5 

1.E-5 1.11448 0 0.044 12.2 1.13553 1 0.55 12.3 

1.E-6 1.11449 1 0.004 13.9 1.13552 0 0.058 14.0 

1.E-7 1.11449 1 0.002 15.4 1.13551 -1 0.005 15.6 

1.E-8 1.11448 0 0.002 16.9 1.13552 0 0.002 17.1 

7 

1.E-4 1.11450 2 0.76 12.0 1.13563 11 3.9 11.9 

1.E-5 1.11449 1 0.044 14.0 1.13552 0 0.55 14.0 

1.E-6 1.11448 0 0.003 16.1 1.13552 0 0.058 16.1 

1.E-7 1.11449 1 0.001 17.7 1.13551 -1 0.005 17.9 

1.E-8 1.11448 0 0.001 19.4 1.13552 0 0.001 19.7 

8 

1.E-4 1.11449 1 0.77 13.5 1.13562 10 3.9 13.4 

1.E-5 1.11448 -0 0.04 15.7 1.13552 0 0.55 15.8 

1.E-6 1.11449 1 0.003 17.9 1.13551 -1 0.058 18.1 

1.E-7 1.11448 0 0.001 19.9 1.13551 -1 0.005 20.2 

1.E-8 1.11448 0 0.001 21.8 1.13552 0 0.001 22.9 

32 1.E-18 1.11448 Reference 122.3 1.13552 Reference 124.0 

Bickley func. 1.11448   0 0.001 19.5 1.13541 -11 0.003 20.1 
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Table 2 

Results of calculation of EC-6 lattice cell with destroyed fuel bundle 

Number 

of 

Nodes 

Cut 

Off 

Value 

Cooled Voided 

k-inf 
k-inf 

(pcm) 

RMS 

(%) 

CPU 

(s) 
k-inf 

k-inf 

(pcm) 

RMS 

(%) 

CPU 

(s) 

2 

1.E-4 1.11835 17 0.44   7.2 1.13708 31 14.4 7.0 

1.E-5 1.11837 19 0.31   8.0 1.13699 22   3.81 7.9 

1.E-6 1.11838 20 0.32   8.8 1.13698 21   0.62 8.8 

1.E-7 1.11837 19 0.32   9.5 1.13699 22   0.32 9.6 

1.E-8 1.11837 19 0.32 10.2 1.13697 20   0.32 10.3 

3 

1.E-4 1.11816 -2 0.38   9.1 1.13685 8 14.6 8.9 

1.E-5 1.11817 -1 0.05 10.3 1.13676 -1   3.87 10.2 

1.E-6 1.11816 -2 0.04 11.3 1.13676 -1   0.57 11.4 

1.E-7 1.11818 0 0.04 12.4 1.13675 -2   0.07 12.5 

1.E-8 1.11817 -1 0.04 13.3 1.13675 -2   0.04 13.5 

4 

1.E-4 1.11818 0 0.38 11.0 1.13687 10 14.6 10.9 

1.E-5 1.11818 0 0.03 12.6 1.13679 2   3.85 12.5 

1.E-6 1.11817 -1 0.01 14.0 1.13678 1   0.57 14.1 

1.E-7 1.11819 1 0.01 15.3 1.13678 1   0.06 15.4 

1.E-8 1.11818 0 0.01 16.5 1.13678 1   0.01 16.8 

5 

1.E-4 1.11818 0 0.38 13.0 1.13688 11 14.6 12.8 

1.E-5 1.11818 0 0.03 14.7 1.13678 1   3.87 14.8 

1.E-6 1.11818 0 0.01 16.6 1.13678 1   0.57 16.7 

1.E-7 1.11817 -1 0.01 18.2 1.13678 1   0.06 18.4 

1.E-8 1.11818 0 0.01 19.9 1.13678 1   0.01 20.1 

6 

1.E-4 1.11816 -2 0.38 14.9 1.13688 11 14.6 14.6 

1.E-5 1.11818 0 0.03 17.1 1.13679 2   3.86 17.0 

1.E-6 1.11816 -2 0.00 19.3 1.13678 1   0.57 19.3 

1.E-7 1.11817 -1 0.00 21.1 1.13678 1   0.06 21.4 

1.E-8 1.11816 -2 0.00 23.1 1.13678 1   0.01 23.3 

7 

1.E-4 1.11815 -3 0.38 16.9 1.13687 10 14.6 16.5 

1.E-5 1.11818 0 0.03 19.4 1.13679 2   3.86 19.3 

1.E-6 1.11818  0 0.00 21.7 1.13677 0   0.57 21.9 

1.E-7 1.11817 -1 0.00 24.1 1.13678 1   0.06 24.3 

1.E-8 1.11817 -1 0.00 26.2 1.13678 1   0.01 26.5 

8 

1.E-4 1.11815 -3 0.38 18.7 1.13687 10 14.6 18.4 

1.E-5 1.11818 0 0.03 21.7 1.13678 1   3.86 21.6 

1.E-6 1.11817 -1 0.00 24.4 1.13678 1   0.56 24.7 

1.E-7 1.11818 0 0.00 27.0 1.13678 1   0.06 27.2 

1.E-8 1.11818 0 0.00 29.5 1.13677 0   0.01 29.7 

32 1.E-18 1.11818 Reference 157.5 1.13677 Reference 159.5 

Bickley function 1.11815 -3 0.00 25.4 1.13668 -11 0.08 26.2 
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4.3 Solution of Large Systems of Collision Probability Equations 

In order to study the efficiency of the block-iteration method presented in Section 3, calculations 

were carried out by varying the block size of matrix partition from 5, 10, 20, … unknowns per 

block up to the full size matrix.  Figure 8 presents the computing time of matrix inversion as a 

function of the block size.  The right-most point of each curve represents the full matrix case. It 

is evident that as the block size increases, the computing time increases rapidly. The time ratio of 

the full matrix case versus small blocks of 5 to 20 unknowns ranges from 100 for the model A.2 

to 1000 for model C. 

Figure 9 presents the iteration computing time as a function of the block size.  A slight increase 

of the CPU time with the decrease of the block size can be observed for the model A.  However, 

for other models, the dependence on the block size is weak with a slight minimum in the block 

size range of 20 to 100 unknowns. 

Figure 10 presents the total computing time as a function of the block size. For each curve, a flat 

region can be observed in the block size range of 20 to 100 unknowns. Compared to the full 

matrix results, the related computing time is decreased by a factor 10 to 80, depending on the 

problem considered. 

According to the presented results, the block size of 20 unknowns seems to be a reasonable 

choice as the default value. 

 

Figure 8  CPU time of matrix inversion as a function of block size 
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Figure 9  Iteration CPU time as a function of block size. 

 

Figure 10  Total CPU time as a function of block size 
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Table 3 summarizes the calculation of large collision probability problems.  As a check of the 

validity, results of MCNP calculations are included as well.  The results of both full-matrix 

solution and block-matrix solution are given for models represented by up to 4000 unknowns.  

When the number of unknowns exceeds this value, the memory requirements of the full-matrix 

method exceed the 2 GB indexing limit on a 32 bit computer so that such problems could not be 

solved. The new solution method speeds up the calculation significantly and allows solution of 

large problems the dimensions of which may go far above 4000 unknowns per group. On the 

other hand, the comparison with MCNP shows a very good agreement between the two codes. 

Table 3 

Summary of large problem calculations. 

Model Code 
Number of 

unknowns 
Matrix k-infinity 

CPU 

(min) 

Speed-up 

factor 

A.2 
WIMS 825 

Full 1.11809 5.03  

Block 1.11813 0.45 11 

MCNP   1.11769   

B: 2x2 
WIMS 1547 

Full 1.09814 51.60  

Block 1.09815 1.63 32 

MCNP   1.09771   

B: 3x3 
WIMS 3942 

Full 1.10799 1029.20  

Block 1.10804 13.05 79 

MCNP   1.10801   

B: 4x4 
WIMS 7295 Block 1.11096 63.22 NA 

MCNP   1.11055   

B: 5x5 
WIMS 11606 Block 1.11217 259.33 NA 

MCNP   1.11191   

C: 3+2 
WIMS 2781 

Full 1.06366 356.83  

Block 1.06362 10.88 33 

MCNP   1.06387   

C: 4+2 
WIMS 3612 

Full 1.07933 845.45  

Block 1.07933 31.43 27 

MCNP   1.07985   

C: 5+2 
WIMS 4443 Block 1.08846 60.07 NA 

MCNP   1.08926   

C: 6+2 
WIMS 5274 Block 1.09431 155.63 NA 

MCNP   1.09508   

NA – Full-matrix method exceeds 2GB indexing limit of 32-bit machine. 

5. CONCLUSIONS 

A new method for collision probability calculation is presented that applies numerical integration 

of the polar angle instead of analytical integration of the Bickley functions.  The algorithm is 

flexible concerning the accuracy and eliminates round-off error that may occur in standard 

collision probability calculations.  Test results show that compared to the standard approach, the 

computing time can be reduced by a factor 2. 
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For a direct method of solution of within-group collision probability equations, the number of 

unknowns is a limiting factor with respect to both, memory requirements and computing time.  

The block iteration method presented in this paper reduces significantly the memory 

requirements and speeds up the calculations by more than one order of magnitude. 
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